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Plates stiffened with ribs can be modelled as homogeneous isotropic or orthotropic plates, and modeling such an 
equivalent plate numerically with, say, the finite element method is, of course, far more economical in terms of 
computer resources than modeling the complete, stiffened plate, and this is important when a number of stiffened 
plates are combined in a complicated structure composed of many plates. However, whereas the equivalent plate 
theory is well established there is no similar established theory for stiffened shells. This paper investigates the 
mechanical and structural acoustic properties of curved shells with stiffening ribs. Finite element simulations and 
analytical data are compared and discussed. 

1 Introduction 

Stiffeners are efficient for enhancing the stiffness of a plate 
or shell without adding too much mass. However, it nor-
mally takes long time to find the acoustic properties of a 
designed stiffened structure. A coarse but faster method is 
to smear the stiffeners to the base plate or shell. The theory 
of a smeared stiffened plate with an effective torsional ri-
gidity has been latest summarized by Szilard [1]. However, 
there is no similar established theory for doubly curved 
stiffened shells. 
During the last thirty years, researchers have paid much 
attention to the dynamic behavior of stiffened shells. Works 
have been done on cylindrical shells [2-12] and on conical 
shells [13-15]. Since doubly curved shells need more de-
grees of freedom to be analyzed, researchers mostly use 
finite element method (FEM) to deal with such cases. The 
application of the FEM to the vibration analysis of a stif-
fened shell allows for discrete stiffeners, variable curvature 
and irregular geometry.  However, FEM calculations may 
be very time consuming.  
The aim of the present work is to present a smearing me-
thod for finding natural frequencies of a slightly curved 
shell with periodic small stiffeners.  In order to derive at a 
simple method, assumptions have to be made, such as Don-
nell-Mushtari-Vlasor’s simplification and an infinitesimal 
distance assumption. Because of these assumptions, the 
present method is limited to slightly curved thin shells with 
small stiffeners. 
Although the application of this method is somewhat li-
mited, it is quite useful for making a fast estimate in its 
working range. Nowadays, engineers usually draw a new 
design structure in a 3D program, and later simulate its dy-
namic properties in a FEM program. The drawing and the 
FEM calculation may take days or even weeks for a rela-
tively simple structure. Furthermore, it is often necessary to 
make modifications to the structure and that require new 
FEM calculations. In all it may be very time consuming. 
This calls for a coarse but fast method for estimating the 
natural frequencies at the beginning of the design before 
detailed drawings have made. The present method is devel-
oped for this purpose, and the equations are implemented in 
a MATLAB computer program.  
In the following, the natural frequencies of a simply sup-
ported rectangular plate with cross-stiffened ribs will be 
presented first, and the obtained equation will be used in the 
case of a curved plate. Later on, the analytical results will 
be compared to FEM simulated data. Moreover, the effects 
of the stiffeners and the curvature will be discussed. Note 
that plates, shells and stiffeners are taken to be of the same 
material in this presentation. 

2 Smeared stiffened plate 

It has long been recognized that the lower modes of vibra-
tion of stiffened plates may be estimated by “smearing” the 
mass and stiffening effects of the stiffeners over the surface 
of the plate. The theory are latest summarized by Szilard [1]. 
The results in this section are mainly based on Szilard’s 
presentation.  
 
 

 
Fig.1 A cross-stiffened plate. 

In the following, we will determine the natural frequencies 
of a rectangular plate with cross-stiffeners. The plate is 
simply supported along all edges, and has the length dimen-
sion a in the x direction and b in the y direction. Other di-
mensions of the plate are shown in Fig. 1, where ws is the 
width of the stiffeners, as is the distance between stiffeners 
in the x direction, bs is the distance between stiffeners in the 
y direction, hs is the height of the stiffeners, and h is the 
thickness of the plate. 
The bending stiffness in the x direction, Dx, can be com-
puted by the product of the Young’s modulus, E, of the 
material and the area moment of inertia in the x direction, 
Ix. Here, the stiffeners in the y direction have nearly no ef-
fect on the bending stiffness in the x direction. Therefore, 
only stiffeners in the x direction are taken into account in Ix. 
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In Eq. (1), Ip = h3/[12(1- ν 2)] and Is =wshs
3/12 are the area 

moment of inertia of the plate and the stiffeners, respective-
ly; ν is the Poisson’s ratio; d is the distance between the 
plate’s bottom surface and the neutral axis of the stiffened 
plate. The second term of the right hand side is the shifting 
of the moment of inertia of the plate, and the last term is the 
shifting of the moment of inertia of the stiffeners. 
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Similarly, the bending stiffness in the y direction, Dy, can 
be determined from the same equations using bs instead of 
as.  
When the stiffeners are smeared and spread on top of the 
plate, the thickness of the equivalent plate becomes 
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The equation for the natural frequencies of this simply sup-
ported orthotropic plate is [1] 
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where "
e ehρ ρ=  is the total smeared mass per unit area; ρ 

is the density of the material, and H is an empirical approx-
imate formula for the equivalent torsional rigidity of a 
cross-stiffened plate [16]. 

3 Smeared stiffened shell 

In this section, we will find an equation for the natural fre-
quencies of a simply supported cross-stiffened rectangular 
shell. 

3.1 Natural frequencies of a slightly 
curved rectangular shell 

Soedel [17] studied a simply supported rectangular shell, 
which is slightly curved. Assumptions like Donnel-
Mushtari-Vlasor’s simplification and the infinitesimal dis-
tance assumption are used in his derivation. 
The first basic assumption of Donnel-Mushtari-Vlasor’s 
simplification is that contributions of in-plane deflections 
can be neglected in the bending strain expressions but not 
in the membrane strain expressions. The second assumption 
is that the influence of inertia in the in-plane direction is 
neglected. Both assumptions introduce a considerable error 
in the estimation of the fundamental natural frequency [18].  
Thirdly, the infinitesimal distance assumption is  

2 2 2( ) ( ) ( )ds dx dy≅ + ,     (4) 

where ds is the magnitude of the differential change [17]. 
This assumption limits the applicability of the method to 
only slightly curved shells. 
With these assumptions, the equation of motion for free 
vibration of a homogenous shell is therefore obtained to be 
[18] 
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and " hρ ρ=  is the mass per unit area. For the doubly 
curved, simply supported rectangular shell, the deflection is 
expressed by a double sine series with terms of the form 
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Substituting Eq.(9) into Eq.(5) gives, 
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The natural frequencies are therefore obtained to be 
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where a and b are the length of the edge in the x direction 
and y direction, respectively, h the thickness of the shell, D 
the bending stiffness, Rx the radius of curvature in the x 
direction, Ry the radius in the y direction, E the Young’s 
modulus. 
The first term of Eq. (11) is the natural frequency for an 
equivalent flat plate that has the same dimensions as the 
shell; the second term is accounting for the curvature.  

3.2 Natural frequencies of a stiffened and 
slightly curved rectangular shell 

This section presents the natural frequencies of a stiffened 
and slightly curved rectangular shell. Both a physical ex-
planation and an analytical derivation are offered. 

3.2.1 Physical explanation 
A doubly curved shell can be made by bending a flat plate 
in the x and y directions. Equation (11) shows that its natu-
ral frequencies are composed by two terms, the natural fre-
quencies of the flat plate and a curvature term.  
It is possible to use this theory for an equivalent smeared 
flat plate mentioned in section 2, when it is bended to an 
equivalent smeared shell. An equivalent smeared plate of a 
stiffened plate is a flat plate with equivalent bending stiff-
ness, torsional rigidity, total smeared mass per unit area, 
and thickness. If the equivalent plate is curved to a shell, its 
natural frequencies can be found by adding the second term 
of Eq.(11) to the contents of Eq.(3). Therefore, the natural 
frequencies of a stiffened shell become 
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Since the current shell is an equivalent smeared shell made 
from the equivalent smeared flat plate, its thickness and the 
mass per unit area should be he and "

eρ , respectively. 
Considering the assumptions in section 3.1, it is expected 
that Eq.(12) only works on simply supported slightly 
curved shells, which have small stiffeners. 

3.2.2 Analytical derivation 
Another way to obtain Eq.(12) is to use the equation of mo-
tion. In Eq.(5), the bending stiffness D is independent of the 
curvature. It is actually the bending stiffness of an isotropic 
plate which is similar to the shell. It is possible to find the 
equivalent bending stiffness of a stiffened shell, and substi-
tute this into Eq.(5) to obtain the equation of motion of the 
stiffened shell. 
It is clear that the second “curvature” of Eq.(12) is indepen-
dent of the bending stiffness of the shell, and that the first 
term of Eq.(12) corresponds to a flat plate. In other words, 
the bending stiffness is independent of the curvature of the 
slightly curved shell. Therefore, we assume that a stiffened 
and slightly curved rectangular shell has the same bending 
stiffness as a similar stiffened plate. Now the work is to 
find the equivalent bending stiffness of the stiffened plate. 
Moreover, using the smeared theory from section 2, the 
equivalent flat plate can be found. However, the smeared 
equivalent plate is an orthotropic plate with different bend-
ing stiffness in different directions and a torsional rigidity.  
We assume that we have found an isotropic equivalent plate, 
which has the same natural frequencies as the orthotropic 
equivalent plate. The natural frequencies of an equivalent 
isotropic rectangular plate is 
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where De is the bending stiffness of the equivalent isotropic 
rectangular plate. The assumption that the natural frequen-
cies are identical gives 

, ,mn e mn pf f= .      (14) 

Substituting Eq.(3) and Eq.(13) into Eq.(14) gives an ex-
pression for the bending stiffness of the assumed isotropic 
equivalent plate as, 
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This yields the wanted bending stiffness. Now, we can 
substitute Eq.(15), he and "

eρ  into Eq.(5) to obtain the equa-
tion of motion of the stiffened shell, 

8 4 " 2 4
3 3 0e e k eD U Eh Uρ ω∇ + ∇ − ∇ = ,   (16) 

Also, he is used instead of h, and "
eρ  is used instead of ρ, 

since he and "
eρ  are the thickness and mass per unit area of 

the current shell, respectively. 
Next, by solving Eq.(16), the natural frequencies of the 
slightly curved, simply supported rectangular shell are ob-
tained to be 
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Note here that the first term equals 2
,mn pf from Eq.(3). It is 

therefore seen that Eq.(17) is exactly equal to Eq.(12). 

4 Comparison  

4.1 Analytical and simulated data 

A MATLAB code is developed for a simply supported 
slightly curved stiffened shell based on the mentioned theo-
ries using Eq.(17). ANSYS simulations are also made for 
the same models and compared with the analytical results. 
The finite element named SHELL93 is used in ANSYS. 
A series of models of slightly curved stiffened rectangular 
shell are examined. The material, which is taken to be the 
same for all models, has a Young’s modulus of 2.1·109 
N/m2, Poisson’s ratio of 0.38, and density of 1030 kg/m3. 
Some dimensions of the models are the same. The edge of 
the shell in the x direction is 1m, and in the y direction is 
0.7 m; the thickness of the shell is 6 mm; the distance be-
tween the stiffeners in the x and y directions are 0.2 m and 
0.1 m, respectively. Other dimensions of the models are 
listed in table 1. 
 

Model ws hs Rx Ry 

1 3mm 9mm 5m 2m 

2 3mm 12mm 5m 2m 

3 3mm 18mm 5m 2m 

4 4mm 9mm 5m 2m 

5 5mm 9mm 5m 2m 

6 9mm 9mm 5m 2m 

Table 1 Dimensions of models 1 to 6. 
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Fig.2 Model 1: Middle surface of the shell with stiffeners. 

The results of the analytical method and the FEM simula-
tion are listed in table 2. As mentioned earlier, the funda-
mental natural frequency is inaccurate. However, for mode 
numbers higher than (1,1), the deviations of the analytical 
and the simulated results are seen to be within 10% for 
model 1. 
Although the analytical results have up to 10% deviation in 
comparison to the FEM simulated results, the former is 
quite useful for a coarse estimate of the natural frequencies 
of the structure.  
 

m n MATLAB ANSYS Deviation
1 1 67 125 -46% 
1 2 65 61 6% 
1 3 98 88 10% 
1 4 157 159 -1% 
1 5 237 242 -2% 
1 6 336 341 -1% 
2 1 91 100 -9% 
2 2 84 88 -5% 
2 3 112 125 -10% 
2 4 169 172 -2% 
2 5 248 253 -2% 
2 6 347 351 -1% 
3 1 109 117 -7% 
3 2 107 114 -6% 
3 3 135 142 -5% 
3 4 190 193 -2% 
3 5 268 272 -1% 
3 6 367 368 0% 
4 1 129 142 -9% 
4 2 135 146 -8% 
4 3 165 172 -4% 
4 4 219 224 -2% 
4 5 297 299 -1% 
4 6 394 393 0% 

Table 2 Comparison of the analytical and simulated results 
for model 1. 

Models 2 and 3 are for shells with increasing height of the 
stiffeners: 12mm and 18mm. The maximum deviation of 
model 2 is found to be 13% and for model 3 it is up to 21%. 

It is obvious that the theory is limited to shells with stiffen-
ers of small height. 
Models 4 to 6 are for increased width of the stiffeners, 
namely 4mm, 5mm and 9mm.  The maximum deviation of 
model 4 is 11%, model 5 is 12% and model 6 is 15%. In 
model 6, the width of the stiffeners takes its limiting value, 
where it equals to the height of the stiffener. This is because 
the empirical formula for the equivalent torsional rigidity H, 
only is valid for the ratio of hs/ws lying between one and 
infinity [16]. That means that no empirical formula is avail-
able for cases where the width of the stiffeners is larger 
than there height.  
In the following, we will study the effect of the stiffeners 
and the effect of the curvatures with the present method. 
Model 6 is considered. 

4.2 The effect of the stiffeners 

The natural frequencies of model 6 are compared to an un-
stiffened shell, which is the shell part of model 6 without 
stiffeners. The results are shown in Fig. 3 except for the 
fundamental frequency of mode (1, 1). The y axis shows the 
difference of the natural frequencies in percentage.  
Fig. 3 shows that the natural frequencies of the stiffened 
shell in most cases are higher than the un-stiffened shell. 
The higher the mode numbers the higher the differences. 
Since the stiffeners are relatively small, the increase of the 
natural frequencies is only moderate. 

4.3 The effect of the curvature 

The natural frequencies of model 6 are also compared to 
those of a stiffened plate that has the same dimensions as 
model 6 but without curvatures. Figure 4 shows the natural 
frequencies of the modes except for the fundamental fre-
quency of mode (1, 1).  
 

Fig.3 Comparison of the natural frequencies of the stiffened 
shell and an un-stiffened shell. 
Although model 6 is only slightly curved, the curvatures 
obviously increase the natural frequencies especially for the 
lower modes. The difference reduces to a small value as m 
and n increase. 
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Fig.4 Comparison of the natural frequencies of the stiffened 

shell and a stiffened plate. 

5 Conclusion 

A simple method for calculating the natural frequencies of a 
simply supported, stiffened and slightly curved rectangular 
shell has been presented in this paper. For the cases ex-
amined the results show that a reasonable engineering accu-
racy can be obtained with little computational effort for 
weakly double-curved panels with small cross-stiffeners. 
It is expected that it is possible to improve this estimation 
method to a wider range of structures by adding a correc-
tion factor, as mentioned in Ref. [18], to the Donnell-
Mushtari-Vlasor’s shell equations. 
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