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Jaime Ramis Sorianoa, Jesús Alba Fernandezb, Jorge Frances Monllora and
Jorge P. Arenas Bermudezc

aDFISTS. Univ. de Alicante, Carretera de Sant Vicent del Raspeig s/n, 03690 San Vicente
del Raspeig, Spain
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Natzaret-Oliva s/n, 46730 Gandia, Spain

cUniversidad Austral de Chile, Institute of Acoustics, 567 Valdivia, Chile
jramis@ua.es

Acoustics 08 Paris

2033



This work aims to study the influence of some material properties on the sound radiation characteristics
of a flat loudspeaker using numerical, analytical, and experimental procedures. A shaker, whose
mechanical characteristics are completely known, is used here as the excitation force for the experimental
study. Finite Element Method has been used to simulate this configuration. An analytical model that
couples the electrical, mechanical and acoustical system of the panel has been used for comparison.
Influence of the elastic modulus and damping loss factor of the panel materials are the main subject of
this research. The analytical formulation provides the basis for studying the structural and vibrational
behavior of the system. The results obtained for different materials and different excitation locations
may be used for optimizing this type of loudspeakers.

1 Introduction

In general, the basic structure of a panel loudspeaker
consists of a plate and one or several inertia exciters (see
Fig. 1). The main advantages of a panel loudspeaker
as compared with conventional ones are its compactness
and low directivity.
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Coil Exciter

Panel
Suspension

Figure 1: Panel loudspeaker with an exciter attached.

Several studies have used electro-mechanical analo-
gies for modeling vibration exciters [2, 3]. Figure 2
shows the equivalent circuit of the total system using
a mobility analogy.
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Figure 2: Electro-mechanical analogy of a panel
loudspeaker (mobility).

Although oversimplified, the analysis of equivalent
circuits provides a useful tool for predicting the behavior
of a loudspeaker. However, this work is focused on the
influence of the Young’s modulus on sound power and
directivity. Then, instead of the inertia exciter used in
conventional panel loudspeakers, a shaker having well-
known properties is employed here to use the maximum
information in the algorithm. The shaker is an essen-
tial piece of test equipment for vibration-proof testing
of electronic products. The estimation based on mea-
surements for obtaining accurate model parameters is
necessary, and it has been discussed in [4].

2 Experimental set-up

Let us consider a panel of dimensions 31.4 cm × 42 cm,
which is divided into 108 elements, as shown in Fig. 3.
The shaker is fixed at two different positions labeled as
A and B.

A modal exciter UA-4824 from B&K attached to a
support specifically designed for the panel size was used
for the measurements. Figure 4 shows the experimental
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Figure 3: Mesh of 108 elements used to discretize the
panel.

set-up placed inside an anechoic chamber of the Univer-
sity of Alicante.

Different core panel materials were considered and
their Young’s modulus were measured using a B&K im-
pact hammer and a B&K accelerometer, according to
the method described by ASTM [8]. In this method,
Young’s modulus is measured in a single beam sample
vibrating in several of its modes, so the material proper-
ties are determined as a function of frequency. In these
tests, measurements were made using the base beam
damped on one side. The experimental set-up is shown
in Fig. 5.

OROS OR34X
  PC-Based 
   Analyzer

 Accelerometer
B&K 4159-0002

 Force sensor
 B&K
 (Type 8230-002) 

B&K Power Amplifier 
        Type 2732

Modal Exciter B&K
    Type 4824

Anechoic Chamber (University of Alicante)
                    DFISTS

  B&K
Analyzer
  2144

Sound Intensity
  Probe B&K
   Type 3548

Figure 4: Acceleration and sound intensity measures in
the anechoic chamber.

3 Theory

In this section, details of the measurement model of the
panel-exciter system are given. Measures of Young’s
modulus of the materials and shaker analysis are shown.
Two sample beams of the material used to made the
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Figure 5: Experimental set-up using a two-channel
spectrum analyzer and B&K modal Hammer.

flat loudspeaker are tested using the ASTM method and
then simulated using the Euler-Bernoulli model [1].

3.1 Influence of Young’s modulus on me-
chanical impedance (Zm)

Assuming light fluid loading, the relationship between
the concentrated force vector f and the velocity vector
v can be written as

f = Zmv. (1)

The assumed-modes method is employed to evalu-
ate the mechanical impedance matrix Zm [5, 7]. For a
simply-supported plate of dimensions Ly × Ly and ma-
terial constants D and µ, the resonance frequencies are

ωmn =

√
D

µ

[
(mπ/Lx)2 + (nπ/Ly)2

]
, (2)

where m and n are integers. The normalized eigenfunc-
tions of the panel are

φmn(x, y) =
2√

LxLy

sin(mπx/Lx) sin(nπy/Ly). (3)

We can express the displacement of the plate as

w(x, y, t) =
l∑

i=1

φi(x, y)qi(t), (4)

where l is the total number of modes considered and qi(t)
is the generalized coordinate. The admissible functions
can be found by either analytical or numerical methods
such as the finite-element method.

The strain energy of the plate is

U =
D

2

∫ Lx

0

∫ Ly

0

[
w2

xx(x, y, t) + w2
yy(x, y, t)

+ 2vwxx(x, y, t)wyy(x, y, t)

+ 2(1− v)w2
xy(x, y, t)

]
dxdy,

(5)

where

D =
Eh3

12(1− v2)
(6)

is the bending stiffness of the plate, E is the Young’s
modulus, v is the Poisson ratio, and h is the thickness of
the panel. The subscripts of w indicate differentiation

of w with respect to that subscript. Now, the kinetic
energy is given by

T =
1
2

∫ Lx

0

∫ Ly

0

µw2
t (x, y, t)dxdy, (7)

where µ is the surface mass density. The virtual work
done by the exciting force f(x, y, t) is

δW =
∫ Lx

0

∫ Ly

0

f(x, y, t)δw(x, y, t)dxdy. (8)

Using the assumed-modes method, we can rewrite
Eqs. (5), (7), and (8) as

U =
1
2

l∑
i=1

l∑
j=1

kijqi(t)qj(t), (9)

where kij are the elements of the modal stiffness matrix,

kij =D

∫ Lx

0

∫ Ly

0

[
φi,xx(x, y)φj,xx(x, y)

+ φi,yy(x, y)φi,yy(x, y)
+ 2vφi,xx(x, y)φi,yy(x, y)

+ 2(1− v)φi,xy(x, y)φi,xy(x, y)
]
dxdy,

(10)

T =
1
2

l∑
i=1

l∑
j=1

mij q̇i(t)q̇j(t), (11)

where mij are the elements of the modal mass matrix,

mij = µ

∫ Lx

0

∫ Ly

0

φi(x, y)φj(x, y)dxdy, (12)

δW =
l∑

i=1

fiδqi(t), (13)

where

fi = µ

∫ Lx

0

∫ Ly

0

f(x, y, t)φi(x, y)dxdy. (14)

Defining the Lagrangian L = T − U , it follows that

∂

∂t

(
∂L

∂q̇i

)
− ∂L

∂qi
= fi i = 1, · · · , l (15)

Substituting Eqs. (9), (11) and (13) into Eq. (15)
leads to the following matrix differential equation

M̂q̈ + K̂q = f , (16)

where M̂ and K̂ are the modal mass matrix and the
modal stiffness matrix, respectively. Then, from Eq.
(16), we can identify the modal mechanical impedance
matrix of the panel

Ẑm =
K̂− ω2M̂

jω
. (17)

We can see from Eq. (10) that the Young’s modulus
is directly associated with the parameters involved in the
dynamic behavior of our system. On the other hand,
it is well-known that determination of changes in the
vibration distribution on the surface of the panel gives us
an idea of changes in sound power and sound radiation
patterns.
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3.2 Transverse or bending vibrations

Consider a flexural vibration experiment on a uniform
beam composed of a linear, homogeneous, and isotropic
viscoelastic material without axial loads, as shown in
Fig. 6.

y

z
x

L

hy
hz

F(x  )0

y(x,t)

Figure 6: Flexural (transverse or bending) vibration
experiment on a beam with length L. F (x0) is the

amplitude of the harmonic applied force and y(x, t) is
the transverse displacement as a function of the

position x.

According to the Euler-Bernoulli model, the transfer
function Gy(jω, x, x0) from the force F (t) at position x0

to the transverse displacement y(x, t) at position x, is
given by

GEuler
y (jω, x, x0) =


B(jω,x,x0)

A(jω) if x ≤ x0,

B(jω,L−x,L−x0)
A(jω) if x ≥ x0,

(18)

where

B(jω, x, x0) =K1(jω, x0) cos(b(jω)x)
+ K2(s, x0) sin(b(jω)x)

+ K3(jω, x0)eb(jω)x

+ K4(jω, x0)e−b(jω)x,

(19)

and

A(jω) =8E(jω)Ib3(s)
× (cosh (b(jω)L) cos (b(jω)L)− 1),

(20)

where L is the length of the beam, E(jω) is the Young’s
modulus, I the moment of inertia of the cross-section of
the beam about the z-axis and b(jω) is related to the
material properties as

b(jω) =
√

4|a(jω)|ej
∠a(jω)

4 ,

where a(jω) = −ρA(jω)2

E(jω)I ,
(21)

ρ is the density of the material, and A is the cross-section
area (A = hzhy for a rectangle with sides hz and hy).
The functions Ki(jω, x0) are given by

K1(jω, x0)
2

=− sin(b(jω)x0) + sin(b(jω)x0)

− sinh(b(jω)(L− x0)) cos(b(jω)L)
+ cosh(b(jω)(L− x0)) sin(b(jω)L)
+ cos(b(jω)L) sin(b(jω)(L− x0))
− sinh(b(jω)L) cos(b(jω)(L− x0)),

(22)

K2(jω, x0)
2

= cosh(b(jω)x0)− cos(b(jω)x0)

− cosh(b(jω)(L− x0)) cos(b(jω)L)
− sinh(b(jω)(L− x0)) sin(b(jω)L)
+ cosh(b(jω)L) cos(b(jω)(L− x0))
− sinh(b(jω)L) sin(b(jω)(L− x0)),

(23)

K3(jω, x0)
2

=e−b(jω)x0 + sin(b(jω)x0)

− cos(b(jω)x0)

+ e−b(jω)L(sin(b(jω)(L− x0))
+ cos(b(jω)(L− x0))

+ sin(b(jω)L)e−b(jω)(L−x0)

− cos(b(jω)L)eb(jω)(L−x0),

(24)

and

K4(jω, x0)
2

=− e−b(jω)x0 + sin(b(jω)x0)

+ cos(b(jω)x0)

+ eb(jω)L(sin(b(jω)(L− x0))
− cos(b(jω)(L− x0))

+ sin(b(jω)L)e−b(jω)(L−x0)

+ cos(b(jω)L)e−b(jω)(L−x0).

(25)

The resonances of the frequency response function
GEuler

y (jω, x, x0) are determined by the zeroes jω = jwk

of gEuler(s) = 0 with

gEuler(jω) = cosh(b(jω)L) cos(b(jω)L)− 1. (26)

Hence, the poles are calculated as

gEuler(jωk) = 0 → b(jωk)L = ξk, (27)

with k = ±1,±2, · · · , and ξk is the wave number of the
kth resonance frequency [6]. Numerical values of ξk are
shown in Table 6.4 of reference [6]. Loss factor can be
calculated from

η =
∆fn

fn
. (28)

Using Eq. (21), the equation for the poles (26) can
be rewritten as

E(jωk) = −ρAL4ω4
k

Iξ4
k

with k = ±1,±2, · · · . (29)

The Euler-Bernoulli theory that leads to the trans-
fer function given by Eq. (18) and with poles satisfy-
ing Eq. (29), ignores the effects of shear deformation
and rotary inertia, and is accurate for thin beams. By
calculating the Young’s modulus from modal response
measurements we will see that the theoretical model is
in good agreement with the Euler-Bernoulli theory.

3.3 Radiation impedance matrix (Za)

If fa are the equivalent concentrated forces acting on
each element due to acoustic pressure, then the following
relation holds

fa = Zav. (30)
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Many methods are available for calculating Za. A simple
formula is used here to obtain the matrix Za [2]

Za = Sρc


1− e−jk

√
S/π · · · jkS

2π
e−jkr1N

r1N

jkS
2π

e−jkr21

r21
· · ·

...
...

. . .
...

jkS
2π

e−jkrN1

rN1
· · · 1− e−jk

√
S/π

 ,

(31)
where S is the area of each element, rmn is the distance
from the center of the element n to the point m (m,n =
1, · · · , N).

3.4 Evaluation of the sound pressure and
the sound power

The far field sound pressure can be calculated using the
linear transformation

p = Ev, (32)

where p is the far field sound pressure vector, v is the
vector of surface velocity of the panel, and E is a prop-
agation matrix, which can be calculated as

E = j
ρ0ckS

2π


e−jkr11

r11
· · · e−jkr1N

r1N

e−jkr21

r21
· · · e−jkrN

r2N

...
. . .

...
e−jkrN1

rN1
· · · e−jkrNN

rNN

 (33)

where rmn is the distance from the center of the element
n to the field point m (m,n = 1, · · · ,M).

The radiated sound power can be calculated as

W = vHRv, (34)

where R = Re{Za}/2, and the radiation resistance ma-
trix R is a positive definite matrix given by

R =
ω2ρS2

4πc


1 sin kr12

kr12
· · · sin kr1N

kr1N

sin kr21
kr21

1 · · ·
...

...
...

. . .
...

sin krN2
krN2

· · · · · · 1

 .

(35)

4 Experimental results

4.1 Young’s modulus determination

The force-to-acceleration transfer functions (s2Gz(jω))
measured for both materials are presented in Fig. (7).

Young’s modulus and damping loss factor for both
panel loudspeaker materials were estimated by Eq. (29)
and reference [8]. Figure 8 and Table 4.1 show the values
estimated.

Using the experimental data, the modal response is
calculated by the analytical model explained in section
3.2. The correlation between the curves allows us to con-
firm that the frequencies used for calculating the mod-
ulus are due solely to the longitudinal bending. The
analytical and measured modal curves are compared in
Fig. 9. Good agreement is observed which assure that
the values obtained are fine enough.
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Figure 7: Force-to-acceleration transfer function
s2Gy(jω) of the flexural vibration experiment using

materials A and B.
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Figure 8: a) Young’s modulus versus frequency for A
(dots) and B (cross) type material. b) Material

damping loss factor versus frequency for A (dots) and
B (cross) type material.

4.2 Sound power level and directivity

This section reports the results attained by introduc-
ing the acceleration measures at panel points into the
equations presented in section 3.3. These results are
compared with those measured using a sound intensity
probe.

For each of the panels under study (Type A and
B), two different output voltages (2 and 5 Vrms) were
applied from the amplifier that feeds the shaker. At
the same time, for each voltage applied, acceleration
data were measured at each one of the 108 points on
the surface of the panels. Measures were done for two
different excitation points (labeled as 69 and 54).

Figure 11 shows the comparison of LW (dB) curves
obtained from the measured accelerations and from the
sound intensity probe for both configurations. It can be
seen that with the same supplied voltage, panel B radi-
ates higher sound power level than panel A. In addition,
it is observed that change in the excitation point does
not produce a considerable difference in sound power
level pattern, except an increment in the sound power
level for both panels.
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Specimen A B
E(GN/m2) 1.66 0.81

η 0.042 0.019

Table 1: Young’s Modulus and Loss factor for
specimen A and B.
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Figure 9: Comparison of theoretical and experimental
transfer function for specimen A.

Figure 11 presents the polar directivity plots for dif-
ferent configurations. For different type of panel, the
directivities are quite similar and they depend on the
frequency of the excitation force.

5 Conclusion

It has been found that a lower value of Young’s mod-
ulus and damping loss factor produces an increasing of
sound power level. At the same time, it appears that the
shape of the directivity pattern is not directly affected
by the mechanical properties of the material. However,
it is observed that the directivity characteristics of the
panel are influenced by the frequency of the excitation
force. Since the points were chosen close to each other,
the directivity is hardly changed. One limitation of the
method presented here may be the accuracy of mechan-
ical characteristics of the shaker.
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