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A signal-based model is introduced which intends to predict integral speech quality along with diagnostic
information in the context of noise. Since “noisiness” is one of the most important perceptual dimensions
for the quality of transmitted speech, this measure constitutes one building block for an attribute-based
speech quality measure which should be capable to cover larger-scale degradations introduced by speech
transmission systems.

The “noisiness” estimation model is based on the prediction of so-called sub-dimensions, reflecting the
relevant perceptual dimensions for noisy conditions. By means of auditory experiments and a subsequent
multidimensional analysis, three sub-dimensions “speech contamination”, “(perceived) additive-noise
level”, and “noise coloration” could be revealed. A two-step prediction model is applied for quality
estimation: Firstly, the sub-dimensions are predicted by the combination of instrumental measures.
Secondly, "noisiness” is estimated by combining the extracted sub-dimensions. A correlation of p > 0.94

can be achieved.

1 Introduction

State-of-the-art instrumental assessment methods for the
speech-transmission quality (e.g., PESQ [1]) predict the
so-called mean opinion score (MOS) quite accurately for
traditional narrowband speech (300-3400 Hz). However,
such methods do not provide diagnostic information of
the speech quality. Such information, however, can give
useful insight into the sources for a decrease in quality
and, thus, are desirable for system or network develop-
ers and maintainers.

In a current research project, we aim at developing
such a diagnostic model for speech-quality prediction.
Integral quality is predicted on the basis of a signal-
based measurement of perceptual attributes. In [2], it
has been shown that the three, mutually orthogonal di-
mensions “directness/frequency content”, “continuity”,
and “noisiness” are essential for traditional telephone-
speech quality.

The project roadmap thus encompasses the develop-
ment of three corresponding dimension estimators and
the derivation of a suitable mapping for integral-quality
prediction. In the present study, an estimator for the
dimension “noisiness” is introduced. The basis for this
measure is the prediction of perceptual and orthogonal
dimensions in the context of noise. These dimensions
can be understood as sub-dimensions (SDs) , in contrast
to the global dimensions mentioned above that were de-
rived in the context of diverse types of degradations.

A two-step estimation model is chosen here: the con-
dition’s position on SDs is firstly predicted by means of
signal parameters correlating with these perceptual di-
mensions. Secondly, the estimated SD coordinates are
mapped onto the sought integral quality scores.

The revelation of these SDs is done by means of au-
ditory experiments and multidimensional analysis tech-
niques. In order to study the relation between the SDs
and integral quality, overall quality scores were collected
in a further test. Both experiments are described in Sec-
tion 2. In Section 3, signal-based dimension parameters
and extraction methods are introduced which are in-
tended to capture the effects the auditory test revealed.
By combining these parameters to dimension estima-
tors, the SD scores as well as the integral quality can
reliably be predicted (Section 4). Finally, conclusions
and discussions are provided in Section 5.
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2 Auditory Tests

For the development process of the two-step prediction
model, auditory test results are required that form the
target values to be estimated. According to our ap-
proach, two auditory tests were conducted. In order to
reveal the perceptual space, a similarity-scaling experi-
ment with subsequent Multidimensional Scaling (MDS)
was carried out. The basic idea of MDS is to translate
the rated dissimilarity of each stimuli pair into a corre-
sponding distance (the more dissimilar two stimuli are,
the larger the distance). In this way, a point configu-
ration can be determined representing the stimuli in an
L-dimensional space. The dimensionality L is derived
on the basis of both statistical fit parameters like the
Stress and the ability for an interpretation [3].

Since the number of stimuli is large in this study,
the so-called “Sorting Task” was employed as an efficient
method of similarity scaling. Here, the participants were
asked to group similarily sounding stimuli into common
bins. As a similarity measure, the frequency of occur-
rence of two stimuli in a common group is counted over
all participants, as described in [4].

The second test consisted of a scaling of integral
speech quality on a continuous 5-point scale with over-
flow ranges (cf. [5]) principally following the guidelines
of ITU-T Rec. P.800.

For the experiments, a set of speech samples was
produced which covers a wide range of distortions in
the “noisiness” domain according to the findings in [2]:

o Additive noise: (White) electric circuit noise (band-
limited to 300-3400 Hz), (white) noise induced on
subscriber lines (cf. [5]), and ambient noise, acous-
tically induced at send side (“Hoth”-shaped white
noise, noise of a car’s driver cabin at 100 km/h,
pneumatic hammer, cafeteria noise).

Multiplicative noise: Noise stemming from adap-
tive differential pulse-code modulation coding (AD-
PCM, see ITU-T Rec.G.726) and the modulated
noise reference unit (MNRU, see ITU-T Rec. P.810).

In each case, different noise levels were applied. A
majority of the speech samples were produced by means
of a realistic telephone simulation tool [5]. A G.711-
coded condition was included as a typical reference in
standard telephony. In total, 69 conditions were consid-
ered for each of four speakers (2f, 2m) in the sorting task
(one separate session for each speaker). Due to experi-
mental effort, only 42 out of the 69 conditions were rated
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Figure 1: 8D configuration plots for one female speaker. Left: sdy vs. sdo Right: sdy vs. sds. Cross X: signal-corr.
noise; star x: real backg. noise (car, hammer, babble); diamond <$: noise with both LF (below 3400 Hz) and HF
(above 3400 Hz) components; triangle A\: HF noise only; circle o: the other cases.

in the integral quality experiment; however, all types of
degradation were included here. A number of 20 listen-
ers (5 f, 15 m) took part in the experiment, aged between
18 and 47 years (@ ~ 26.7 years). They listened to the
stimuli through a standard handset, equalized accord-
ing to the standard receive characteristic IRS-rec. The
experiments took place in a room conforming to the re-
quirements given in I'TU-T Rec. P.800.

A dimensionality of L = 3 results in an acceptable
data fit (Kruskal’s Stress; < 0.1, cf. [3]) and provides
a plausible picture of the data. Fig. 1 depicts two
planes of the resulting point configuration for one fe-
male speaker. In the remainder, we focus on an axial
interpretation of the structure:

e SD1: The first SD is labeled with speech contami-
nation. In its positive direction, the energy of both
the additive and multiplicative noise within the
speech-relevant spectral band (limited to 300-3400
Hz) increases. Significant noise energy beyond this
band (mainly stemming from the subscriber-line’s
noise-floor) is not captured here. Their respective
points are located on the negative end of this axis.

e SD2: The second SD is labeled (perceived) additive-
noise level, as it is highly correlated with the en-
ergy of additive noise.

e SD3: The third SD is labeled noise coloration.
Along this dimension, the strongly colored noises
such as realistic background (BG) noises and the
very “bright” sounding subscriber-line’s noise-floor
can be distinguished from the rest.

Comparing the point configuration of the different
speakers (each of which are derived from the data of a
dedicated test session), it can be stated that the point
coordinates are mostly stable, except for the realistic
BG conditions. Obviously, the participants were uncer-
tain about the similarity of the BG stimuli with regard
to each other and to the other (white or shaped white
noise) conditions. This may be due to their strongly
differing composition and information content.

3 Dimension Parameters

Fig. 2 shows the flow diagram of signal processing used
for feature extraction. Firstly, a preprocessing is de-
ployed to suppress the influence from the distortions
other than noise. Furthermore, it provides suitable the
internal representation of signals for parameter extrac-
tion. Five parameters are extracted for SD estimation
according to the following ideas:

e As SD1 is assumed to be determined by the degree
of speech distortion by “in-band” noise (300-3400
Hz), measures should be developed to capture ei-
ther the speech distortion or the noise level in the
speech activity. If the additive noise is constantly
present throughout the stimuli, the LF noise level
nyy is measured in speech pauses and below 3400
Hz. If no substantial noise is found in speech
pauses, the weighted cepstral distance d..), is used
to measure the “fine” speech distortion such as
signal-correlated noise [6].

e For SD2, the noise level is measured as n, in speech
pauses.

e Without BG noise, SD3 seems to be solely influ-
enced by the very “bright” noise that can be dis-
tinguished from the rest. As a result, the gravity
center of frequency f., of noise [7] is used to de-
scribe the noise-energy distribution and the HF
(above 3400 Hz) noise level ny s is also measured.

3.1 Preprocessing

Here, the preprocessing is described in detail.

3.1.1 Time-frequency Analysis and Gain Equal-
ization

The spectra of both the clean and the degraded signal,
notated as X (u,4) and Y (p, 1), are calculated by a short-
time Fourier transformation (STFT). Here, u indicates
the p-th frequency bin and ¢ indicates the i-th frame,
where p =0,1,--- . M —1and ¢ =0,1,---,L — 1. The
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Figure 2: Signal processing for “Noisiness” prediction.

transfer function H(u) of a transmission system is then
estimated by a comparison of the clean and the degraded
spectra. Finally, the system gain is equalized by

X' (1) = X (1) - H(p). (1)

3.1.2 Frame Erasion due to Packet-loss

If possible, the frames corrupted by packet-loss should
be erased from consideration.

3.1.3 Critical-band filters

In order to obtain a spectral representation that better
corresponds to the human auditory system, critical-band
filters [8] were applied. In our case, X’ (u,4) and Y (u, )
are filtered by 34 Gaussian-shaped critical-band filters
presented in Fig. 3. The filter-band spectral represen-

0 1000 2000 3000 240(20) 5000 6000 7000 8000
Figure 3: 34 critical bands used in the preprocessing.

tation of X'(u, ) can be obtained by:

S X D)PF ()
b, (c,i) = EPAL/[:BlF(N,C) (2)

where F'(p, ) is the p-th coefficient of the c-th Gaussian-
shaped filter. The spectral representation of the de-
graded signal ®,(c,4) can be determined analogously.

3.1.4 Noise Estimation

The noise-spectrum estimate @, (¢, 7) is calculated as the
difference between the degraded- and clean-signal spec-
tral represntations in speech pauses:

B, (c,i) = max{®,(c,i) — ®,(c,7),0} in speech pauses
&) = missing else
3)

Here, o is a small positive value.
The noise estimate for each band is then given by:

NL(c) = median{10log; | P, (c, )|} (4)
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In the final step, the A-curve A(c) according to [9] in
dB is applied to @, (c,1):

NLy(c) = NL(c)A(c). (5)

3.1.5 Bandwidth Limitation

Parallel to the critical-band filtering and noise estima-
tion, both X’ (u,4) and Y (u, ) are filtered by the same
rectangular bandpass filter so that the energy beyond
the speech-relevant frequency range is totally suppressed.
This step is necessary for the weighted cepstral distance
measure so that it is only influenced by the “in-band”
noise.

3.1.6 Cepstrum

The cepstrum is then calculated based on the bandpass-
filtered spectra:

1. Inverse transform each frame into time domain,

2. Use Levinson-Durbin recursion to calculate the
linear prediction coefficients a(k, i) of order 8, where
k indicates k-th coefficient.

3. Extract cepstral coefficients according to [10]

k—1
c(k,i) = a(k,i) +
=1

c(l,i)alk —1,9).  (6)

x|~

We use ¢, (k,1) and ¢, (k,4) to denote the cepstral coef-
ficients for the clean and the degraded signals.

3.2 Parameter measures
3.2.1 Determination of n,, n;y and ny

The parameters n,, n;y and njy represent the mean
energies of all bands, the first 25 bands, and the last 9
bands, respectively.

34
1
np = 10log;o( 5 S 10N EaC)/10), 7)
c=1
1 &
iy = 1010g10(2—5 Z 10N Ea(e)/10),
c=1

34
1
nag = 100y (5 D 10VEAl/10),
c=26



3.2.2 Determination of f.,

In order to obtain f., the amplitude noise spectrum is
shifted so that its maximum is fixed as a positive value
ST = 10 dB and its negative values are set to zero in
the first step:

NLgr(c) =max{NL(c) — NLmax + ST,0}.  (8)

fen is then determined by

X NLst(e)-c
" XA NLsr(o)

9)

3.2.3 Determination of d.,

The cepstral distance is a well-known objective measure
for the speech distortion [6]. Here we used a modified
cepstral distance which is weighted by the speech en-

ergy:

SE o w(i) (O ook ) — ey (k)2 — 1)

deep = L )
> iz w(i)
(10)
where C' = 10 V2 is a normalization constant accord-

log(10)
ing to [10] and w(¢) is the weighting factor determined
by the signal energy of the i-th frame:

M—-1
. 1 .
w(i) = max{QOlogwM > 1Xp(u,i)| — (—=30),0}.
pn=0

(11)

3.2.4 Parameter Boundaries

As a last step, the parameter domains are restricted
in order to take interactions between parameters and
saturation effects into account:

0 if nyy > 0
—35 if ngy > —35
3.5 ifdeep > 3.5

doop = { deep if1.5<deep <35 (13)
1.5 else
—-15 ifn, > —15

my = { n, if —50<mn,<-15 (14)

—50 if n, > =50
0 if N > O&fc,n > 22

n—hf = Nhf if —40 < Nhf < O&fc,n > 22(15)
—40 else

4 Dimension Estimator

Two steps are undertaken to train the dimension esti-
mator for “noisiness”. Firstly, estimators for the sub-
dimensions are trained based on the SD scores from
the auditory test and the above measured parameters.
Then, the “Noisiness” estimator is trained on the basis
the SD scores and the MOS values from the auditory
tests.

Combining the above two models leads to a two-step
prediction model for the overall quality, which indicates
“noisiness” in our context.
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As mentioned before, the positions of the BG noise
in the 3D space are unstable and thus hard to predict.
Hence the training of all the following prediction models
have been done without these stimuli. However, as we
will see later, the resulting model can also predict the
overall quality of these stimuli quite well.

4.1 Sub-dimension Estimators

The SD prediction models are trained using the SD
scores and the modified measures of one female speaker.

_— —2

s = { 50243840, — 051dey, miy < g
2.25 + 0.13757 + 0.00117;72, else.

sdy = 0.59 —0.0747m, — 0.00247,> (17)

sds = 1.30—0.03677 — 0.001477,72 (18)

Fig. 4 shows the curve fitting results of the above for-
mula to the signal measures. Table 1 summarizes the
prediction performance for the training stimuli.

| | without BG noise | with BG noise |

N p RMSE | N p RMSE
sdi | 60 | 0.97 0.26 69 | 0.95 0.36
sda | 60 | 0.97 0.26 69 | 0.82 0.59
sdz | 60 | 0.93 0.70 69 | 0.49 0.74

Table 1: Performance of SD predictors for the training
stimuli of one female speaker. N: sample size.

4.2 Prediction of “Noisiness”

The prediction model for MOS is trained on the basis
the SD scores and MOS values from the auditroy tests:

MOS = 2.660 — 0.531sd; — 0.2873sd> (19)
—0.440sd> — 0.255sd3 + 0.284sd1sd> — 0.491sd3

With this model, MOS values can be predicted by the
SD scores with a correlation of p = 0.97 without BG
noise and p = 0.85 with BG noise.

4.3 Prediction Performance

Substituting sd;, sds and sds by s/;dl, S/JQ and S/d\g in(19)
and combining (16)—(19) results in an overall-prediction
model.

Besides the above training stimuli, the stimuli from
one male speaker are used as the test stimuli. Table 2
and Fig. 5 show the prediction performance of this two-
step prediction model. Although the stimuli with BG
noise can not be captured by all the prediction models,
they can be predicted by the overall prediction model
quite well.

| | without BG noise | with BG noise |

N p RMSE | N p RMSE
training | 36 | 0.96 0.31 42 | 0.94 0.33
test 36 | 0.95 0.33 42 | 0.94 0.37

Table 2: Performance of two-step MOS predictor. N:
sample size.
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Figure 4: Curve fitting of signal measures on target sub-dimensions. Star: BG noise; circle: the others.
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Figure 5: Performance of two-step MOS predictor.

5 Conclusions and discussion

In this paper, we have proposed an estimation model
for the speech-quality dimension “Noisiness” which is
based on so-called sub-dimensions. This model implies
that “noisiness” can be divided into three meaningful
sub-dimensions, “speech contamination”, “(perceptual)
additive noise level”, and “noise coloration”. Each of
these sub-dimension can be predicted by combining the
instrumental measures ni¢, naf, Np, fe,n and deep, and
the integral speech quality in the context of noise, can
be predicted based on these predicted sub-dimensions.

Although the overall prediction model estimates the
integral quality with a high correlation (p > 0.94) for all
the stimuli, we have found that a group of stimuli with
realistic background noise can not be captured in all
prediction models. The good performance of the over-
all prediction model seems to support our assumption
that this deviance may stem from the uncertainty felt
by the test persons regarding this kind of “informative”
and “complex” noise, however the exact reason of their
deviance from the rest is still unknown.
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