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A systematic study of the on-axis location of the maximum pressure and intensity points in the field radiated by 
a focused transducer is presented as well as the motion of these characteristic points as the transducer voltage is 
increased.  Different initial distributions, ranging from uniform to Gaussian cases, are considered.  
Experimental and numerical results, based on the solutions of the KZK equation, with different initial conditions 
are analyzed. An analytical expression of the initial (linear) shift of the maximum pressure position is given. This 
expression, and the results of the numerical simulations, shows a good agreement with the experimental data. As 
a main conclusion, we demonstrate that the axial range of the nonlinear shift of pressure is larger for strong 
initial focal shifts, occurring for small Fresnel number transducers. Theoretical and numerical predictions of the 
focal shift effect in Gaussian beams are also presented. In this work we have established the relation between the 
focal shift (both in linear and nonlinear regime) with the Fresnel number of the transducer.  

1 Introduction 

Sound beams have attached an increasing attention 
during the last six decades [1,2], being the object of 
numerous  theoretical and experimental investigations, 
mainly motivated by their extended use as multifunctional 
instruments in many applied technologies like in medical 
therapy [3] and non-destructive testing [4]. Nevertheless, 
the interplay among factors like diffraction, nonlinearity, 
and focusing in the acoustic field propagation still keep 
some open questions. An example of that is the case of the 
on-axis maximum pressure position of a beam. It differs 
with respect to the geometrical focus (linear shift), specially 
for low Fresnel number transducers (those with weak 
focusing), and also it moves towards focal point when the 
driving transducer voltage increase, and backward, to the 
transducer, if we reach highly nonlinear regimes (nonlinear 
shift). The range of this movement can be very appreciable 
and several references [5,6] have tried to explain this 
behavior with different interpretations. 
The aim of this work is to provide a systematic study of the 
linear and nonlinear shift in pressure and intensity for 
different transducers (low and high focalization) as well as 
for different initial conditions (Uniform and Gaussian 
amplitude distribution in the transducer).  
First, an analytical expression of the initial (linear) shift of 
the maximum pressure position is given that improve the 
previously reported ones [7] and match with the 
experimental data. After that, a theoretical study of the 
nonlinear shift is provided for Gaussian transducers. In the 
third and fourth sections the experimental dispositive and 
the numerical simulation code are exposed. In the next 
section, the experimental results for the nonlinear behaviour 
of the on-axis pressure and intensity maxima are presented, 
as well as the numerical results obtained for the nonlinear 
shift in uniform transducers with different Fresnel number 
(different focusing) and its relation with the linear shift. In 
this section it will be discussed also the numerical results 
obtained for nonlinear shift in Gaussian transducers. 

2 Theoretical Predictions 

2.1 Linear focal shift 

In the linear regime it is clear that the on-axis 
pressure/intensity main maximum position and the 
geometrical focus (the shift of the maximum position from 
geometrical focus towards the transducer) do not coincide. 
Really, the diffraction, inherent to any beam, is the 

widening factor accumulated along the axis and it expands 
the focal waist (therefore decrease the field maximum in 
waist) and moves the waist (and maximum) position to the 
side of the lesser diffractional beam expansion, i.e. toward 
transducer. In our investigation this linear effect is the 
initial situation for the study of the influence of the 
nonlinear beam propagation regimes on the evolution of 
focal shift. Therefore the exact numeric data about the 
value of the linear focal shift is important for us. This data 
for beam can be given from the spatial distribution of the 
pressure ( ) ( ) tiikzezrAtzrp ω−= ,,, , whose complex 
amplitude ),( zrA  is the solution of the ordinary wave 
equation in the parabolic approximation. This solution is 
(see, for example [7]): 

(1)
 

 
where z is the longitude coordinate along beam axis, r  the 
radial (transverse) coordinate, k the wave number  and    
A(r, 0) is determined by the initial condition. 
As a boundary condition, we assume an initial distribution 
of pressure along the transducer in the form of a truncated 
Gaussian function, with a parabolic phase profile 
accounting for the focusing effect 

   
                               

, 0 ≤ r ≤ a           (2) 
 

and zero otherwise. 
For this initial condition the on-axis pressure-amplitude 
distribution can be calculated from Eq. (1). Figures 1 and 2 
show some of the results: 
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Fig. 1. Theoretical on-axis pressure distributions in linear 

regime for a gaussian beam (dashed line), truncated 
gaussian beam (upper solid line), and a beam with uniform 
initial condition (lower solid line). (a) and (b) corresponds 

to the cases of low (NF = 1) and high (NF = 10) Fresnel 
number. 

 
 
 
 
 
 
 
 
 
 

Fig 2. Dependence of the position of the on-axis main 
pressure maximum on Fresnel number  NF . Distance in 

dimensionless units. 

2.2 Nonlinear focal shift in Gaussian 
transducers 

For the analysis of the nonlinear behaviour of Gaussian 
beams we make use of the analytical pressure distributions 
obtained in [8] for the paraxial region. There, analytical 
solutions of the Khokhlo-Zabolotskaya equation were 
obtained in the form ( ) Δ++= − ηθ 0

1 sinfP , where  

0/ ppP = is the acoustic pressure normalized to its peak 
value at the source,  ( ) δθτθ +Φ++= 00 sing is an 
implicit function of time, and f, η, Δ, Φ, δ are functions of 
the gain G, the nonlinearity parameter N and the 
normalized axial distance Rzz /~ = , defined by Eqs. (38)-
(43) in [8]. 
The pressure and intensity distributions (Fig. 3) can be 
obtained from these expressions and depend only on the 
parameters G and N (defining the initial conditions), and 
the axial coordinate z~ . 
 

 

 
Fig. 3. On-axis peak pressure (a) and intensity (b) as 

follows from the analytical solutions of the KZK equation 
with an initial Gaussian distribution, for G = 1 and different 

values of the nonlinearity.  

3 Experimental set-up 

The experimental setup follows the classical scheme of 
confronted emitting transducer and receiving hydrophone in 
a water tank. We use a Valpey-Fisher focused transducer 
based on a piezoelectric spherical shell of curvature radius 
of 11.7 cm and diameter of 3 cm working at 1 MHz. The 
transducer is driven by the signal provided by a 
programmable Agilent 33220 function generator, amplified 
by a broadband rf power amplifier which permits to deliver 
voltage amplitudes at the transducer terminals up to 750 
Vpp without distortion. The emitted signal is detected by a 
calibrated membrane hydrophone NTR/Onda Corp. 
MH2000B, with a sensing aperture of 0.2 mm and a flat 
frequency response between 1 and 20 MHz, which allows 
for the registration of the wave-form profile confidently. 

4 Numerical Simulation 

The propagation of high intensity focused ultrasonic beam 
can be modeled with great accuracy by the Khokhlov-
Zabolotskaya-Kuznetsov (KZK) equation, which for 
axisymmetric beams is: 
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      (3) 

where 0/' cztt −= is a retarded time, 0c  the propagation 
speed, δ the sound diffusivity, β the coefficient of 
nonlinearity, and 0ρ the ambient density of the medium. 

Equation 3 is valid in the paraxial approximation (ka<<1) 
and takes into account nonlinearity, diffraction, and 
thermoviscous absorption by its corresponding terms, and 
the focusing through initial condition. 
Several numerical schemes have been proposed for solving 
Eq. 3. We have used the time domain algorithm described 
in [9] with uniform or Gaussian amplitude distributions as 
boundary conditions. 

5 Results 

The experiment and the numerical simulations tried to 
confirm the theoretical results obtained in section 2, as well 
as to study the nonlinear shift in the case of uniform 
pressure distribution in the transducers, where we have not 
analytical solutions for the KZK equation. 

5.1 Uniform pressure distribution in the 
transducer 

The next aim is to inspect systematically in experiments 
how the nonlinearity influences the pressure and intensity 
maxima. In section 2.1 it was shown that the low-Fresnel-
number beams (transducers) are characterized by a large 
initial linear focal shift what gives the possibility for its 
appreciable change in nonlinear regime. According to this 
fact, a Valpey–Fisher focused transducer with a = 1.5 cm 
and R = 11.7 cm, operating at a frequency f = 1 MHz, was 
used in our experiments. Under these parameters of the 
transducer the Fresnel number is equal to 1.28 and, on the 
basis of the model of uniform pressure distribution on 
transducer, the linear focal shift is equal to 0.33 R = 3.9 cm 
(accordingly zmax = 0.67 R = 7.8 cm). 
The full experimental information is collected and 
presented in Fig. 4, where the experimental on-axis 
pressure distributions (dashed curves) and the 
corresponding calculated on-axis intensity distributions 
(solid curves) under increasing input voltages in the range 
200–500 Vpp are given. 
We have numerically solved the KZK equation (see details 
in section 4) We simulated the propagation in water of the 
beams radiated by focused transducers with different 
Fresnel number, from low to moderate values, concretely 
NF=0.6, 1.3, 2.2, and 3.8. The initial distribution was 
assumed to be uniform. The results are shown in Fig. 5, 
where the position of the axial pressure maximum is 
represented, for each transducer, for increasing driving 
amplitudes. The Fresnel number of the transducers 
increases from left to right. We clearly observe that the 
magnitude of the shift (distance from the initial focus 
position to the return point) is larger for the transducer with 
smaller NF, and decreases monotonically with NF. 
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Fig. 4. On-axis peak pressure (dashed lines, right axis) and 

intensity (continuous lines, left axis) curves. Only the 
neighbourhood of the maxima is plotted. Maximum values 
are marked with symbols. Input values are 200, 250, 300, 

350, 400, 450 and 500 Vpp from bottom to top. 
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  Fig. 5. On-axis maximum pressure for different 

Fresnel number transducers working from linear to 
nonlinear regime. 

5.2 Gaussian pressure distribution in the 
transducer 

We have numerically solved the KZK equation using a 
Gaussian amplitude distribution as boundary condition. 

 
Fig. 6. On-axis pressure for G=1 and different values of the 

nonlinearity parameter, N=0, 0.5, 1.0 and 1.3. 
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