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The echo-based technique of acoustic pulse reflectometry can be used to measure tubular objects to determine 
the bore profile. In this paper, measurements of historic orchestral horn crooks are presented showing how the 
technique can help to determine the method of construction of historic crooks and can provide valuable 
information to manufacturers of reproduction period instruments. Comparison of the bore profile measured by 
pulse reflectometry and the known exit radius of the crook can be used to determine the presence of leaks. The 
technique is shown to be sensitive enough to find a leak in a horn crook that behaves reasonably under playing 
conditions and was not suspected of having a leak prior to testing.  

1 Introduction 

Acoustic Pulse Reflectometry (APR) is a non-invasive 
technique that can be used for the measurement of the input 
impulse response of a tubular object. From this the input 
impedance and the internal profile can be deduced. In 
conventional APR a loudspeaker produces as closely as 
possible an acoustic impulse (click) which travels down the 
air contained in a cylindrical source tube and into the object 
under test.  
When the bore contracts a positive reflection coefficient is 
experienced by the wave, and expansions cause a negative 
reflection coefficient. The multiple reflections within the 
object under test then result in backward going waves 
travelling back down the source tube to be measured by a 
microphone mounted in the source tube wall. As long as the 
dimensions of the source tube are long enough then the 
forward going impulse and the backward going reflections 
are separated physically in the time domain. 
A measurement with the source tube closed by a cap is then 
performed and a deconvolution procedure is used to 
calculate the input impulse response.  The bore profile (as a 
plot of internal diameter versus axial distance) of the object 
under test can then be deduced using the layer peeling bore 
reconstruction algorithm [1].  
This paper describes recent developments in the technique 
which include use of Maximum Length Sequences, the 
importance of DC and low frequency information in 
determining slow trends in the resulting reconstruction, and 
the method of calibration of the apparatus. Application of 
the technique is demonstrated via an investigation into the 
bore profiles of a selection of crooks from orchestral horns. 

2 Maximum Length Sequences 

Using impulsive excitation is not an efficient method of 
getting energy into the system. If impulses are to be used 
then averaging of repeated measurements must be 
performed to give a good signal to noise ratio. A more time 
efficient technique is to use signal maximum length 
sequences (or MLS). Swept sine wave techniques are also 
popular but in this case the experiment tends to take a little 
longer to perform if convincing results are to be obtained. 
 
A maximum length sequence (MLS) signal is a pseudo 
random sequence of 0's and 1's that has a flat frequency 
spectrum. The sequence is used as the input to the 
loudspeaker and the signal is measured at the microphone. 
The loudspeaker should produce two repetitions of the 
MLS with the microphone signal recorded during the 

second play as the reflections of the end of the MLS are just 
as important as the reflections from the start of the MLS. 
The input impulse response of the system is then extracted 
by cross-correlation of the original MLS with the 
microphone signal. This method of excitation has been 
employed frequently in measuring the input impulse 
response of rooms for reverberation measurement [2] and 
more recently for APR. 
The easiest method of programming the cross-correlation is 
to use frequency domain multiplication: 

 ( ) ( ) ( )ωωω PMLSH ×= ∗  (1) 

where H(ω) is the Discrete Fourier Transform of the system 
impulse response, P (ω) is the Discrete Fourier Transform 
of the measured microphone signal and MLS* (ω) is the 
complex conjugate of the Discrete Fourier Transform of the 
original MLS sequence that was fed to the loudspeaker. A 
computationally much faster technique is to use the Fast 
Hadamard Transform for cross-correlation [3] but with 
modern computer power the Discrete Fourier Transform 
approach is perfectly adequate. 

3 Experimental Setup 

3.1 Single Microphone Apparatus 

Single microphones have been used for most pulse 
reflectometry in the past [4,5,6]. The schematic of the 
experimental apparatus is shown in figure 1.  

 
Fig.1 Acoustic Pulse Reflectometry Apparatus. 

This technique relies on the assumption that an impulse 
emitted by the loudspeaker will completely pass the 
microphone before any reflections arrive from the end of 
the source tube. The length of the source tube between the 
microphone and the end of the tube is chosen to meet this 
condition. Also the last of the reflections from the object 
under test must completely die away before the first of 
those reflections bounce off the loudspeaker and reach the 
microphone. The distance between the loudspeaker and 
microphone is also chosen to meet this condition. 
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This technique is effective for short objects. Measuring 
longer objects is possible but high frequency accuracy 
suffers. The reason for this is that the length of an impulse 
measured in a cylindrical tube depends on the visco-thermal 
losses experience by the wave as it travels down the source 
tube. These losses increase with frequency, causing the 
impulse to be low pass filtered, so rounding the corners and 
making it longer in length. Increasing the source tube 
dimensions in principle allows longer objects to be 
measured but also increases the width of the impulses, 
necessitating further increases of source dimensions so 
creating a vicious cycle. 

3.2 Multiple Microphones 

While single microphones have been used for most pulse 
reflectometry in the past, using multiple microphones has a 
major advantage in terms of separating forward and 
backward going waves making shorter source tubes 
possible (which in turn leads to much smaller visco-thermal 
losses within the source tube). Recent work in this area has 
included very high accuracy impedance measurement using 
swept sine excitation using four calibrations and precisely 
machined dimensions [7, 8]. 
Separation of forward and backward going waves using two 
microphones has also been attempted by Louis et al. [9]. 
The main problem with these techniques is that 
wavelengths that have certain integer relationships with the 
microphone separation distance are not measured 
accurately. This can be solved by taking measurements with 
microphones at various separations. Another problem was 
with the sensitivity of the experiments to the machining or 
knowledge of the distances between microphones and 
calibration objects. Future work may involve discussion of 
solutions to these problems. 

4 Calibration 

Calibration is performed by deconvolving the reflections 
from a cap used to terminate the source tube from the object 
reflections. This can be been done by frequency domain 
division: 

 ( ) ( )
( )ω
ωω

CAP
OBJIIR =  (2) 

where CAP is the FFT of the cap reflections, OBJ is the 
FFT of the object reflections and IIR is the FFT of the input 
impulse response (and an inverse FFT is used to calculate 
the time domain input impulse response). This process 
removes the effect of the frequency responses of the 
microphone, loudspeaker, soundcard and source tube 
propagation. The only limitation is that the signal to noise 
ratio is very poor at frequencies outside the bandwidth of 
the above responses.  
No signal is measured above around 15 kHz for most pulse 
reflectometry measurements (depending on the length of 
the reflectometer source tube) due to visco-thermal losses. 
For similar reasons and due to the laws of diffraction the 
reflection coefficients of most musical instruments to these 
high frequencies are minimal. In practice the random noise 
outside the measurement bandwidth can cause certain 
frequencies in the IIR have very large values for the 

division. These singularities in the measurement have often 
been corrected by using a small constraining factor, q, 
added to the denominator of the frequency domain 
deconvolution [4,5,6]: 

 ( ) ( )
( ) qCAP

OBJIIR
+

=
ω
ωω  (3) 

This forces the impulse response to zero outside the 
bandwidth of the cap measurement. The disadvantage of 
this technique is that it has a small effect on frequencies 
within the measurement bandwidth. The current 
experiments use a new version of this processing which can 
be described as a constraining vector: 

 ( ) ( )
( ) ( )( )ωω

ωω
qCAP

OBJIIR
+

=
1

 (4) 

with q(ω) being a vector equal to zero for low frequencies 
and then increasing exponentially at high frequencies to set 
the impulse response to zero outside the bandwidth. The 
cut-off must be fine tuned depending mainly on the losses 
(which in turn depend on the radius and length of the source 
tube). Figure 2 shows the results of a frequency domain 
division with and without a constraining vector. An 
alternative technique developed by Forbes at al [10] is that 
of Truncated singular value decomposition (TSVD). 

 
Fig.2 Frequency domain division. 

5 Results 

The following results show the accuracy of the current 
technique. The green line in figure 3 shows the internal 
profile of an early 20th century (possibly 1930s) Boosey and 
Hawkes orchestral horn in F (with valves open) measured 
by pulse reflectometry. Also shown is the blue line which 
shows the internal profile of the same crook removed from 
the rest of the horn. Figure 4 shows the same plot but 
focussing in on just the crook section.  
Physical measurements of the very end of the crook reveal 
an internal diameter of between 10.8 and 10.6 mm. There is 
a tenon joint at the end of the crook which is strongly 
tapered to allow a snug fit with a socket on the corpus of 
the instrument. At a distance of 5mm in from the open end 
of the tenon, the diameter is measured to be between 11.4 
and 11.5 mm. These measurements agree quite closely with 
the internal profile shown according to pulse reflectometry. 
It is likely that the error is of the order of 0.2 mm. The 
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bandwidth of the experiment extends to 15 kHz and this 
corresponds to a wavelength of 23 mm. Steps in the bore 
will therefore not be resolved perfectly but will suffer from 
a Gibbs phenomenon ripple in the internal profile. This 
explains the imperfections of the reconstruction near the 
open end of the crook. 
 

 

Fig.3 Boosey and Hawkes piston valve horn in F (circa 
1938). 

The crook is constructed from two sections of tubing, one 
roughly parabolic in shape and the other roughly 
cylindrical. These are joined by a sleeve joint at 
approximately 600 mm along the crook as measured along 
the center line of the tubing starting from the mouthpiece 
receiver. It is possible to join two tubes with very little 
discontinuity in cross section using a sleeve joint. One 
particularly interesting feature of this crook is the 
expansion in diameter between 500 mm and 600 mm along 
the crook (i.e. at the end of the first section of tubing). It 
seems likely that this was not a design feature but is the 
result of a repair. 
If a dent occurs in a brass instrument then the instrument 
may be disassembled at the soldered joints and then a hard 
appropriately shaped object (a mandrel or dent ball) is 
inserted to the appropriate location inside the horn and 
supported on a vice. The dented tubing is then pressed 
down so that the depressed area is raised by the hard object 
within. This can lead to thinning of the metal and an 
expanded bore diameter as may have happened in this case. 

 
Fig.4 Valved Boosey and Hawkes (detail). 

The next set of results, in figure 5, shows bore profiles from 
three crooks: a Boosey and Hawkes crook (London, circa 
1938), a Boosey & Co crook (London, circa 1900), and a 
mid 19th century crook by F. Besson, Paris. The figure 
illustrates a general trend observed by the authors, that 
more recent instruments tend to have larger internal 
diameters for the cylindrical section of the crook than more 
historic instruments. Interestingly the reconstructions for 
both the B&H and Bossey & Co crooks show dents at the 
same point (around 785 mm along the length of the tube) 
and by visual inspection of the instruments it is clear that 
this has been caused by difficulties players may have had 
inserting and removing the crook into and from the corpus, 
causing some damage to the section of the coiled crook 
tube adjacent to the tenon joint which joins the crook to the 
corpus. 
Unlike the ‘London’ crooks, the older Besson crook was 
constructed from two sections of tubing using an 
overlapping or terrace joint. In these, the tubing is joined by 
expanding the internal diameter of one tube so that it mates 
with the other tube, or two different tube diameters are 
used. It is clear from pulse reflectometry and from external 
observation that the join is located around 700 mm from the 
mouthpiece end. This crook, although quite playable, is so 
significantly dented and depressed in the initial section of 
tubing that it is not clear what bore profile was initially 
created by the maker. It is, however, clear that the terrace 
joint construction did originally imply the large jump in the 
profile observed at 700 mm. 

 

Fig.5 19th century Besson crook (significantly dented) and 
crooks by Boosey & Hawkes, and Boosey & Co. 

 
In figure 6 and 7 we see bore reconstructions for a set of 
crooks in current production, and made by M. Jiracek & 
sons of the Czech Republic. These crooks are in very good 
condition. The C-alto and B flat-alto crooks are constructed 
using single almost conical sections of tubing. The A and G 
crooks are constructed from two sections of tubing, one 
roughly conical and one cylindrical. It is clear from the 
reconstructions and from observation of the outside of the 
crooks that the sleeve joint is at a position 565 mm from the 
mouthpiece end. The discontinuity in the bore at this 
position is not great so the joints were well constructed and 
soldered. Measurement of the internal diameters of the exits 
of the crooks revealed a value of 11.7 mm. This agrees well 
with the measurements of the C-alto, Bb-alto, A and G 
crooks. 
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Fig.6 Modern crooks (C to G) by M. Jiracek & sons (Czech 
Republic). 

The F and E crooks have been constructed using three 
pieces of tubing, the second two of which are cylindrical 
with socket joints at 565 mm and 1200 mm. Four pieces of 
tubing have been used to construct the E flat and D crooks 
and these have joints at 565 mm, 1200 mm and 1865 mm. 
The maker appears to have used a single conical mandrel to 
construct the first section of tubing for all but the shortest of 
the crooks (C-alto). Varying lengths of up to 465 mm (1.5 
feet) of cylindrical pipe of internal diameter 11.7 mm have 
then been carefully joined to create the correct acoustic 
length for the instrument. The bore reconstructions shown 
in figure 7 show a 0.5 mm over-prediction of the internal 
profile at the end for the F, E, and D crooks. This is due to 
the sensitivity of the bore reconstruction algorithm to very 
low frequency components in the impulse response 
measurement for test objects over a meter in length. 

 

Fig.7 Crooks by M.Jiracek & sons (Czech Republic). 
Figures 8 and 9 show a modern Bb/Eb-alto double horn 
with rotary valves made by Engelbert Schmid of Germany. 
The term double horn refers to the fact that in addition to 
the usual valves for chromatic playing, a valve is provided 
which can be used to bypass a section of tubing to change 
the length from that for a Bb horn to that for an Eb horn. 
Measurements were performed with this change valve 
depressed and not depressed (the main valves were not 
depressed). 

The five valves are positioned side by side starting at 
around 580 mm along the length of the bore. The first 
change valve for changing between the Bb and Eb sounding 
lengths is positioned at 580 mm. Next the air column 
continues through the three main valves followed by the 
second change valve which is present at 720 mm. The bore 
profiles then deviate with the Eb valve position setting the 
start of the bell section at this point as can be seen from the 
deviation of the graphs in figure 9. The section of tubing 
added by the second change valve for the Bb sounding 
length finishes at 1495 mm. The total length of tubing 
added is therefore around 770 mm.  
Figure 9 also shows that the extra section of tubing used for 
the Bb sounding length features discontinuities at 1200 mm 
along the instrument length. These may correspond to the 
main tuning slide and the two water release keys either side. 
The internal bore diameter at the tuning slide is 11.9 mm 
and this expands to 12.5 mm where sections are partially 
pulled out to set the tuning. The mean diameter around this 
point is shown as 12.2 mm on the bore reconstructions, 
showing an over prediction in internal diameter by 0.3 mm. 
It is possible that the slight constriction by 0.5 mm in 
internal diameter at 1180 mm along the bore corresponds to 
a mild distortion in cross-section at the bend in the tuning 
slide. 

 

Fig.8 Modern double horn by with rotary valves by Schmid 
(Germany). 

 

 

Fig.9 Valved Schmid horn (detail). 
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The Schmid instrument also features a removable screw on 
bell and figure 8 shows clearly that the measurements of the 
Bb horn diverge from each other at a diameter of around 60 
mm. The diameter of the screw connection between the 
removable bell and the main corpus of the instrument is 70 
mm exactly, showing that the technique is reasonably 
accurate for the whole length of the instrument. Plane wave 
propagation is assumed in the bore reconstruction algorithm 
which means that better accuracy at the bell is not currently 
achievable but the study of multimodal decomposition [11] 
may be used to solve this problem in the future. 
The crooks measured in the bore reconstructions in figure 
10 were constructed by Gautrot of Paris in around 1875. 
These were made using overlapping or terraced joints. The 
close agreement in profile for the crooks shown in Figure 
10 suggests that the tapered parts of these crooks have been 
drawn from the same mandrel. However, at approximately 
700 mm from the mouthpiece receiver end, the C-basso 
crook appears to have a more rapid expansion in bore 
profile. A trivial examination of the crooks indicated that 
there was an anomaly in the results: either there was an 
error in the measurements or some other cause. This was 
evidenced by the fact that the measured internal diameter of 
the cylindrical tubing was, in fact, larger than the external 
diameter.  
One possible cause for this apparent expansion would be a 
small leak at the point where measured results expands 
rapidly, diverging from the profile of the other Gautrot 
crooks. The effect of the leak is to cause a negative 
reflection in the impulse response which in turn is 
interpreted as a spurious expansion in the bore profile [4]. 
A test was performed by blowing through the crook while it 
was partly submerged in water. Bubbles were observed to 
be coming from a point 700 mm along the bore proving the 
existence of the leak at this position. The exact position of 
the leak was obscured from detection from the naked eye 
beneath adjacent coils of tubing. . In playing tests, although 
the crook felt “stuffy”, it was not apparent that this 
stuffiness was caused by a leak. 
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Fig.10 Crooks by Gautrot (Paris, circa 1875). 

5 Conclusion 

Pulse reflectometry has proved to be very useful in 
determining the construction methods used by 
manufacturers. In addition to this the leaks, dents and 
imperfections in manufacture can be readily identified and 

located. The error bound for internal diameter 
measurements for tubular objects of relatively gradual flare 
and of length 1 m of the current apparatus is around ±0.1 
mm and around ±0.8 mm objects in excess of 2 m in length.  
Its ability to find these features is far in advance of the 
human eye, or indeed ear! Pulse reflectometry could be 
used by manufacturers and repairers as part of a quality 
control process. It should also be noted that the technique 
has wider application than just that of musical instruments, 
but would be of value for any industry interested in 
detecting imperfections in tubular objects, finding leaks in 
pipework for example.   
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