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An experimental dynamic material property identification technique is presented that is based on the theoretical 

formulations of a vibrating pre-stressed beam.  The technique determines the viscoelastic material properties of 

tissue mimicking materials that govern their dynamic behavior.  Results are presented for a silicone based 

material (CF11-2188 Nusil Silicone Technology, Carpinteria, CA) that is in the form of a thick string held 

between fixed supports under tensile pre-stress.  The specimens are excited through the transverse harmonic 

displacement of the boundary.  Transverse vibration at an arbitrary location is measured and compared with 

theory to identify material viscoelastic moduli valid up to at least several hundred Hertz.  The presented 

technique can aid in providing accurate viscoelastic parameter values for phantoms that are used in the 

development of a range of medical diagnostic techniques that attempt to identify pathology or tissue 

differentiation via changes in mechanical stiffness and viscosity. 

1 Introduction 

The quantification of the mechanical properties of various 

types of phantom materials has been of interest due to their 

use in constructing various types of compliant in vitro 

models of biological tissues.  These compliant models have 

been used to test various types of novel sensor prototypes 

[1], mimic human anatomy of the cerebrospinal fluid 

system [2], lung cavity [3], brain [4], heart [5], vessels [6], 

and other complaint tissues.  One robust quality of the in 

vitro studies is that they are often able to be used to perform 

measurements which are not possible in vivo.  In addition, 

in vitro models remove the necessity for institutional 

review board approval on living subjects.  However, for in 

vitro model results to be useful, it is critical that the 

material properties are quantified and made similar to in 

vivo.  In general, the models have mimicked the in vivo 

elastic properties, but not done as well with mimicking the 

viscous damping provided by biological tissues.  In 

addition, for the few in vitro studies which have detailed 

material properties, namely Young’s modulus and 

Poisson’s ratio [7], it was assumed that these properties are 

linear, while it is fairly well understood that silicone based 

materials exhibit frequency dependent material properties.  

Likewise, it is known that human tissue exhibits 

viscoelastic behavior [8], and this behavior changes 

substantially post mortem [9], compounding the challenge 

of accurately obtaining the mechanical properties of living 

tissue.  Quantification of the viscoelastic properties of soft 

tissue-like materials has been performed by a number of 

researchers [10-15].  In the present study, we detail a 

technique for quantifying the viscoelastic properties of a 

compliant silicone based elastomer, which can be formed 

into a continuous thick beam.  In particular, a silicone based 

elastomer, CF 11-2188, was chosen due to its low Young’s 

modulus, which is similar in magnitude to that of human 

soft tissue.  This material has been used to construct various 

compliant tissue and flow models [1, 3, 11, 16].  The 

proposed method of material property identification 

introduced here will lead to a set of parameters that are easy 

to use in theoretical calculations and computational studies. 

2 Theory 

The transverse vibration of the thick elastic phantom string 

can be modelled by using the governing equations of a 

vibrating string or pre-stressed thin beam.  Due to the 

thickness of the specimen the effects of bending may not be 

negligible; therefore, a formulation that accounts for this is 

used. 

The transverse motion of a pre-stressed elastic thin beam 

subject to excitation at its end is governed by the following 

equation [17], 
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Here, x is the longitudinal axis, y is the transverse 

displacement, E is the Young’s Modulus, ρ is the material 

density, A is the beam cross sectional area, I is the moment 

of inertia of the cross section, and T is the axial force on the 

prestressed beam and is positive for tensile prestress. 

If harmonic forcing is assumed as in the case of the 

experiment the normal mode harmonic solution can be 

taken as below: 

  ( ) ( ) tiexYtxy ω=, .   (2) 

The general solution for the above equation is given here 

directly. 

( ) ( ) ( ) ( ) ( )xDxCxBxAxY ββαα sinhcoshsincos +++= . (3) 

Here, the unknown coefficients A, B, C, and D depend on 

the boundary conditions and the wave numbers α and β are 

given as: 

 
222 aωςςα ++−= ,  (4-a) 

and 
222 aωςςβ ++= ,  (4-b) 
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T

2
=ς .    (4-c) 

During the experiment, the pre-stressed beam is clamped at 

one end (no displacement or rotation) and driven with a 

harmonic displacement in the transverse y-direction from 

the support at the other end x = 0 m while constraining 

rotation at that end.  (Fig. 1). 
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This will lead to the following boundary conditions: 
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Fig. 1  The schematic of the pre-stressed fixed-fixed beam 

with transverse base excitation 

The application of the boundary conditions to the given 

general solution results in the system of equations linear in 

terms of the unknown coefficients A, B, C, and D which 

can be solved algebraically by simple matrix inversion to 

yield: 
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3 Material model 

The behavior of linear viscoelastic materials can be 

generally predicted using the Generalized Maxwell model 

[18].  The Generalized Maxwell model simulates the 

relaxations occurring at a distribution of times by the use of 

multiple numbers of spring and dashpot Maxwell elements 

arranged in parallel and series configuration as shown in 

Fig. 2.  Some simple variations of the Generalized Maxwell 

model are the Maxwell model, Kelvin-Voigt model, and 

Standard Linear Solid (SLS) model. 

 

Fig. 2 Schematic of the Generalized Maxwell Model 

Standard Linear Solid (SLS) model (Fig. 3) is used in this 

work for the formulations regarding the viscoelastic 

phantom material.  The SLS model, also known as the 

Kelvin model [19], is a simplified version of Generalized 

Maxwell model where only first two arms (Hookean arm 

and the Maxwell arm) are kept.  SLS model is considerably 

easier to use than the Generalized Maxwell model; it is 

more accurate than the Maxwell model in predicting creep, 

and it is superior to the Kelvin-Voigt model in predicting 

stress relaxation. [20] 

 

Fig. 3 Schematic of the Standard Linear Solid (SLS) Model 

The differential relation between stress and strain for the 

SLS material shown in Fig. 3 is stated as follows: 
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Under harmonic excitation conditions this equation takes 

the following form: 
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The harmonic relation between the stress and strain can be 

written in the frequency domain as follows: 

  ( ) ( ) ( )ωεωωσ ⋅= *E .  (10) 

Here, E
*
 is the frequency dependent complex Young’s 

modulus that also embodies viscoelastic properties and it 

can be shown it is in the following form: 
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It can be observed that as E2 stiffens the SLS model 

converges to Kelvin-Voigt model and as E1 vanishes it acts 

as Maxwell model. (Fig. 4).  It should also be noted that for 

static loading conditions and when frequency of excitation 

is low E
*
 simply becomes equal to E1, the Young’s 

modulus.. 

(a) (b)  

Fig. 4 Schematics of Kelvin-Voigt (a) and Maxwell (b) 

materials 

4 Experimental work 

An experimental setup is prepared to realize the problem 

formulated as given in the previous sections.  The picture of 

the setup is shown in Fig. 5.  The setup consists of two 

adjustable clamps that satisfy the fixed-fixed boundary 

conditions, one attached firmly to a fixed base and the other 

attached on an electromagnetic shaker (Bruel&Kjaer Type 

4809 with Bruel&Kjaer Type 2706 Power Amplifier) for 

transverse excitation through the boundary at x = 0. 

Silicon specimens were prepared by thoroughly mixing 

equal amounts of the two part CF11-2188 elastomer 

together for at least ten minutes.  Note, the CF11-2188 

elastomer is produced in large batches at the factory.  The 

mechanical properties of the material vary from batch to 

batch, since the batch protocol at the factory is not 
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optimized to maintain consistent elastic properties of the 

cured material.  For this reason, four separate batches of the 

material were obtained from the factory and tested, 

resulting in various material properties for each batch.  The 

mixture was then degassed in a vacuum container (Nalgene 

5305-0910, Rochester, NY) and then formed into thick 

strings by casting into large drinking straws.  The 

specimens were then left to cure for one week at room 

temperature, after which they were carefully removed from 

the straws and cut to 10 cm unstressed lengths.   

The cast specimens are mounted between the clamps and 

brought to the prescribed pretension (corresponding to 30% 

or 50% strain) that will lead to the tensile (positive) beam 

prestress.  Retro-reflective tapes (3M) are attached to the 

top of the specimens and transverse vibration is measured at 

x = L/5 away from base excitation point using a laser 

doppler vibrometer (LDV)(Polytec CLV 800) together with 

the transverse boundary acceleration by means of an 

impedance head (PCB 288D01).  A 0-400Hz broadband 

base excitation signal is provided by a dynamic signal 

analyzer (Agilent 35670A) which is used for the data 

acquisition purposes at the same time. 

 

Fig. 5 Picture of the experiment setup for transverse 

vibration of pre-stressed silicon specimen 

The data acquired from the experiment is the transfer 

function between the boundary acceleration and transverse 

beam velocity averaged 32 times.  In order to obtain a 

normalized dimensional form this function is multiplied by 

an appropriate factor that also takes the sensor sensitivities 

into account, as shown in the following equation. 
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5 Material property determination 

by hybrid optimization 

Property determination involves finding an appropriate set 

of values for E1, E2, and η.  Many approaches are possible.  

In this study, the set of material parameters are sought to 

obtain a match between the experimentally determined 

transfer function between the boundary excitation 

displacement and transverse vibration displacement G(ω| 

and the corresponding theoretical transfer function 

amplitude Y(x)/Yo. 

This becomes a three to one mapping type optimization 

problem with no constraints or lower/upper bounds.  That 

is, the solution of an “unconstrained optimization problem”, 

where the design parameters vector, X, is of length three 

and defined as: 

  [ ]T
EEX η21=  (13) 

Since, it is desired to find the “best” model that simulates 

data as close to the experimental data as possible, the 

objective (cost) function, which is to be minimized, should 

be selected as some kind of error function.  Root Mean 

Square Error (RMSE) function is selected for this purpose, 

which can be expressed as: 
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where p is the actual value and 
p̂

is the estimated value of 

the function of x. 

Experimental data is obtained as a complex function of 

frequency, i.e. for each frequency there is a magnitude and 

phase component (or the corresponding real and imaginary 

parts).  Hence, there exist two RMSE functions, PRE and 

PIMG, one for the real parts and the other for the imaginary 

parts.  In this way there exist not a single but two different 

objectives (multi-objective optimization): 

1. Minimize the RMSE between the real parts of the 

experimental and the simulated data. 

2. Minimize the RMSE between the imaginary parts 

of the experimental and the simulated data. 

The method used, for the solution of this multi-objective 

optimization problem, is the weighted sum strategy, which 

converts the multi-objective optimization problem to a 

single objective problem by constructing a weighted sum of 

all of the objectives.  As the result of the ongoing 

discussion, the objective function is selected as: 
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where w1 and w2 are equally selected weights of 0.5 and N 

is the sample size. 

The plots given in Fig. 6 show the behavior of objective 

function over a wide range of E1, E2, and η.  As η increases, 

as seen from the figures, the objective function surface 

“smoothes” providing a global minimum valley.  However, 

for smaller values of η, there exist many local extrema, 

hinting that a classical optimization method might fail to 

reach the global minimum.  Therefore, a genetic algorithm 

is selected to be used for the solution of this problem.  

Genetic algorithms are mathematical methods for global 

search and optimization that are based on the mechanics of 

natural selection and science of genetics. 

The mechanisms of biological and computational steps of 

genetic algorithm are explained in detail by Whorton [21].  

Briefly summarizing his work, genetic algorithms consist of 

coding a population of candidate solutions and then 

operating on the population to determine the next 

generation.  Iteration carries on for several generations until 

the population converges to a most fit solution.  The next 

generation is determined by a mechanism of “natural 

selection”, where the fitness of each member of the 
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population, based on the cost (objective) function is 

evaluated. 

(a)  

(b)  

Fig. 6 Objective function behavior for 

(a) η = 50 and (b) η = 500 

Recently MathWorks (Natick, MA) have added the Genetic 

Algorithm and Direct Search Toolbox to their popular 

technical software package MATLAB.  In this study, 

their “ga” function from the above mentioned toolbox is 

utilized.  The algorithm employed by the “ga” function of 

MATLAB can be summarized as follows where the 

algorithm: 

1 Begins by creating a random initial population. 

2 Creates a sequence of new populations. At each step, the 

algorithm uses the individuals in the current generation to 

create the next population following the steps: 

a Computes the fitness value of each member of the current 

population. 

b Selects members, called parents, based on their fitness. 

c Some of the individuals in the current population that 

have lower fitness are chosen as elite. These elite 

individuals are passed directly to the next population.  

d Produces children from the parents. Children are 

produced either by making random changes to a single 

parent—mutation—or by combining the vector entries of a 

pair of parents—crossover. 

e Replaces the current population with the children to form 

the next generation. 

3 Stops when one of the stopping criteria is met. 

A well-known deficiency with the genetic algorithms is the 

time required to reach optimal solution.  As a work around 

to this problem, a hybrid approach is utilized in this study, 

thus the genetic algorithm is run over a population of size 

30 for 500 hundred generations.  Although this relatively 

short run of genetic algorithm (computational time is about 

10 minutes on a moderate PC) failed to reach the optimal 

solution, it provided a feasible starting point for classical 

gradient based optimization method (in this study, fminunc 

function of MATLAB is utilized for classical 

optimization) . 

6 Results 

The algorithm explained in previous section is run over the 

experimental data of four different batches of the same 

material, each batch having three different samples.  Each 

sample is pre-strained to %30 and %50 percent of initial 

length.  Thus, the algorithm was run for 24 cases. 

Fig. 7 shows the response plots for experimental and 

simulated data for one of the cases (Batch 1, Sample 3 at 

30% initial strain).  As seen, the optimization algorithm 

gives quite acceptable accuracy over a range of several 

hundred Hz. 
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Fig. 7 Comparison of experimental and theoretical models 

(a) Magnitude and phase vs. cyclic frequency (0-400Hz) 

(b)Real and imaginary parts vs. cyclic frequency (0-400Hz) 

To obtain the sample based parameters a weighted sum 

approach is utilized.  For the same sample of material, data 

with different initial strains (30% and 50%) that gave 

minimum final objective function value was assigned the 

highest weight. 

A similar weighted sum approach is utilized to obtain batch 

based parameters, but this time using all available 

information (all samples at all initial strain levels) for each 

batch of the material.  Final results are provided in Table 1.  

Note that, for batches 2 and 4 the parameter search did not 

reach a solution for a finite E2 so for those batches the 

search was done for E1 and η, i.e. E2 = ∞ for those batches. 
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Material E1 (Pa) E2 (Pa) ηηηη ( ( ( (Pa⋅⋅⋅⋅s)))) 

B1 55100.0 137344.9 317.0 

B2 36520.4 ∞ 272.5 

B3 155087.5 181803.6 306.3 

B4 40367.6 ∞ 309.3 

Table 1 Estimated parameters for the different batches of 

the CF11-2188 material 

7 Conclusion 

A method was developed for the determination of 

viscoelastic material parameters of a silicone phantom 

material.  The method uses data obtained from a simple 

vibration test which is compared with careful theoretical 

modeling of the experiment.  The set of parameters that will 

result in the best match between the theory and experiment 

is sought by utilizing a hybrid optimization algorithm 

consisting of Genetic Algorithm and Unconstrained 

Optimization.  It was observed that there were significant 

variations between different batches of the same material.  

These were in the form of numerical and behavioral 

variations where two batches (B1 & B3) acted as Standard 

Linear Solid, others (B2 & B4) acted as Kelvin-Voigt type. 
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