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Qualitative and quantitative characterisation of the velocity distribution is an important aspect in order
to study human speech production. Classical physical phonation models exploit quasi one-dimensional
flow descriptions for which the velocity distribution is obtained from an analytical relationship depending
on volume airflow velocity, geometry and pressure distribution. Therefore, ‘in-vitro’ validation and
characterisation of simplified flow models is obtained straightforwardly by measuring the relevant
quantities. More detailed and quantitative velocity predictions on the other hand, aiming e.g. to
improve phonation modelling or to study turbulent sound production, require increased precision of the
qualitative and quantitative characterisation of both the mean and fluctuating part of the velocity field.
The current paper presents preliminary ‘in-vitro’ measurements of the velocity distribution obtained
by hot film single sensor anemometry and two component Particle Image Velocimetry. Simplified rigid
geometries are assessed in order to represent different geometries encountered in the upper airways.
Besides qualitative results a first quantitative comparison between simulated and measured velocities is
provided and discussed in case of round free jet development.

1 Introduction

Physical modelling of speech production is mostly deal-
ing with phonation or voiced sound production denoting
sounds involving auto-oscillations of the vocal folds due
to the interaction with respiratory airflow as is the case
for vowels. In general simplified models are preferred
for physical phonation modeling in order to establish
an unambiguous relationship between model parameters
and ‘in-vivo’ or ‘in-vitro’ measurable quantities. Con-
sequently, phonation models as the classical two mass
model exploit quasi one-dimensional flow descriptions
in order to estimate the pressure forces exerted on the
vocal folds tissues [6]. These simplified flow models pro-
vide an analytical relationship between velocity distri-
bution, volume airflow velocity, geometry and pressure
distribution [2]. Therefore validation of the quasi one-
dimensional flow models is obtained straightforwardly
by measuring the relevant quantities [6, 2].
Although phonation involves a major part of human
sound production, vocal folds auto-oscillations are a very
particular and well localised sound source. Hence, a ma-
jor part of fluid flow related phenomena and associated
sounds are left untreated in classical studies dealing with
physical phonation modelling. Moreover, the fluid flow
through the upper airways is likely to become turbu-
lent depending on flow and articulator conditions as il-
lustrated in Figure 1. Consequently more detailed and

Figure 1: Upper airway articulators (small) and
phenomena associated with turbulence (capitals).

quantitative flow model predictions aiming to improve
phonation modelling or to study turbulent sound pro-
duction require increased precision for qualitative and
quantitative airflow characterisation. In addition to the

characterisation of the smooth flow evolution associated
with the main convective flow, the onset and develop-
ment of turbulent flow requires the characterisation of
the apparently random fluctuations of fluid motion su-
perimposed to the mean flow.
In the current paper characterisation of the airflow is
assessed by applying hot film single sensor anemom-
etry and two dimensional Particle Image Velocimetry
(PIV) to simplified mechanical replicas representing dif-
ferent portions of the upper airway and different artic-
ulator positions. Articulator configurations associated
with turbulent flow development are considered [8, 9].
Besides qualitative results a quantitative comparison be-
tween simulated and measured velocities is provided and
discussed axisymmetrical free jet development.

2 Velocity field characterisation

Measured velocity data are required in order to validate
velocity field simulations and in order to estimate fluid
mechanical and acoustical relevant quantities by means
of integration or differentiation. In the following quanti-
ties of interest are outlined. Next the case of the round
free jet is considered. Finally the limitations due to
single sensor anemometry scanning and two-component
PIV are briefly considered.

2.1 Quantities of interest

For incompressible flows ∇U = 0 holds where U =
(U, V, W ) denotes the velocity vector. In this case the
Navier-Stokes equations can be rewritten in terms of the
vorticity ω as:

∂ω

∂t
+ U∇ω = ω∇U + ν∇2ω (1)

where ν denotes the kinematic viscosity. Hence esti-
mation of the vorticity field yields an important fluid
mechanical quantity. The full velocity gradient tensor G
is given as:

G =
dU

dX
=

⎡
⎣

∂U
∂x

∂V
∂x

∂W
∂x

∂U
∂y

∂V
∂y

∂W
∂y

∂U
∂z

∂V
∂z

∂W
∂z

⎤
⎦ , (2)

with X = (x, y, z) the position vector. The deformation
tensor of eq. 2 can be decomposed into a symmetric
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part and an antisymmetric part:
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(3)
The symmetric part represents the strain tensor with
the elongational strains on the diagonal and the shearing
strains on the off-diagonal, whereas the antisymmetric
part contains only vorticity components. Hence eq. 2
can be expressed as:

dU

dX
=
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(4)
The Reynolds decomposition decomposes the velocity
U(X, t) into its mean 〈U〉 and fluctuation u = (u1, u2, u3):

u(X, t) ≡ U(X, t) − 〈U(X, t)〉 (5)

The mean momentum equation is then expressed by the
Reynolds equations

D〈Uj〉
Dt

= ν∇2〈Uj〉 − ∂〈uiuj〉
∂xi

− 1

ρ

∂〈p〉
∂xj

, (6)

where the term 〈uiuj〉 denotes the Reynolds stresses.
Together with the Poisson equation for 〈p〉,

−1

ρ
∇2〈Uj〉 =

∂〈Ui〉
∂xj

∂〈Uj〉
∂xi

+
∂2〈uiuj〉
∂xi∂xj

, (7)

the Reynolds equations provides 4 equations for the four
unknows 〈U〉, 〈p〉 and in addition the unknown Reynolds
stresses. Therefore the set of equations is unclosed. The
diagonal components of the symmetric Reynolds stress
tensor 〈uiuj〉,

〈uiuj〉 =

⎡
⎣ 〈u2

1〉 〈u1u2〉 〈u1u3〉
〈u1u2〉 〈u2

2
〉 〈u2u3〉

〈u1u3〉 〈u2u3〉 〈u2

3
〉

⎤
⎦ , (8)

are normal stresses whereas the off-diagonal components
are shear stresses. Half the trace of the Reynolds stress
tensor defines the turbulent kinetic energy k(X, t):

k(X, t) ≡ 1

2
〈u · u〉 =

1

2
〈uiui〉. (9)

So, obviously the Reynolds stresses are an important
physical quantity appearing among others in Lighthill’s
stress tensor whose elements Tij reduces for an inviscid
and isentropic flow to

Tij = ρ〈uiuj〉. (10)

2.2 Round free jet

The turbulent round free jet at the exit of a circular
tube with length L and diameter d is characterised by
self-similar behaviour of the mean velocity field as well

as the Reynolds stresses [7]. The mean centerline ve-
locity Uc(x) is expected to decrease proportional to x−1

while the mean radial profiles U(x, y) scales with the
centerline velocity:

U0

Uc
=

1

K

x − x0

d
and

U(x, y)

Uc(x)
= e−αη2

(11)

with K centerline decay rate, η = y
x−x0

, U0 the veloc-
ity at the tube exit, x0 virtual origin, x the flow di-
rection, y the transverse radial direction and the model
parameter α derived from the radial spreading rate S as
α = ln(2)/S2 often yielding α=94 for a round free jet.
Besides the mean velocity field the turbulence statistics
expressed by root mean square (rms) u′ = σ ≡ 〈u2〉1/2

and higher moments, i.e. skewness Su ≡ 〈u2〉3/σ3 and
kurtosis K ≡ 〈u2〉4/σ4, approach Gaussian values in the
self-similar region.
A turbulent viscosity νT (x, y) = y1/2Uc(x)ν̂T (η) can be
estimated from S and jet half width y1/2 as

νT (x, y) = y1/2(x)Uc(x)ν̂T (η) with ν̂T (η) =
S

8(
√

2 − 1)
.

(12)
The assumption of turbulent viscosity νT (x, t) allows to
overcome the closure problem and to estimate the shear
stress from the mean velocity field,

〈u1u2〉 = −νT
∂〈U〉
∂r

. (13)

The Reynolds stress tensor for a two-dimensional flow
statistically invariant under reflections of the z coordi-
nate axis reduces to

〈uiuj〉 =

⎡
⎣ 〈u2

1
〉 〈u1u2〉 0

〈u1u2〉 〈u2

2
〉 0

0 0 〈u2
3〉

⎤
⎦ . (14)

Furthermore the velocity spectra inform on the energy
scales. A simple power law is applied in order to model
the energy spectra E(k) as:

E(k) =
C1(

1 + k
C2

)n . (15)

with wavenumber k and C1,2 model constants. Expo-
nent n set to n = 5/3 and n = 3 corresponds to Kolgo-
morovs and Kraichnans law respectively indicating the
inertial and decay portion of the spectra respectively [4].

2.3 Measurement limitations

Single sensor or one-componenet (1D) anemometry or
two-component PIV (2D PIV) provides at most the x
and y velocity components. Consequently this data can
only be differentiated with respect to the x and y di-
rections. Therefore only a few terms of the deformation
tensor, eq. 4, can be estimated, i.e. vorticity component
ωz normal to the light sheet in case of 2D PIV along with
the in-plane shearing εxy and extensional strains εxx and
εyy. Remark that for an incompressible flow, ∇U = 0,
the third in-plane extensional strain can be estimated
as εzz = −(εxx + εyy). Following [10] vortices appear
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for non-real eigenvalues of the reduced velocity gradient
tensor G:

G =
dU

dx
=

[ ∂U
∂x

∂V
∂x

∂U
∂y

∂V
∂y

]
. (16)

The discriminant λ2 of non-real eigenvalues of the ve-
locity tensor G separates vortices from other patterns:

λ2 = (traceG)2 − 4 det (G) (17)

3 Experimental setup

Qualitative and quantificative characterisation of the
instantaneous velocity field is experimentally assessed
with 1D anemometry and 2D PIV [5, 1]. PIV has the
advantage to inform non-intrusively on large parts of
flow fields while anemometry allows direct measurement
of the velocity distribution. Mechanical ‘in-vitro’ repli-
cas with different degree of complexity and typical air-
flow conditions encountered during speech production
are briefly described in the next section.

3.1 Experimental conditions

The upper airway geometry stretches from the larynx up
to the lips as depicted in Fig. 1. Airflow conditions in
the upper airways during speech production are charac-
terised in terms of relevant non-dimensional numbers as:
Reynolds Re≈ O(103), Mach Ma ≈ O(10−2), Strouhal
Sr ≈ O(10−2) and the airflow is assumed to be incom-
pressible [6, 9]. The vocal tract length ranges from 7
up to 18 cm depending on age and morphology whereas
position and degree of constrictions depend on the ar-
ticulators configuration. Rigid and deformable ‘in-vitro’
mechanical replicas with different degree of complexity
are developed in order to study the flow behaviour and
the influence of mechanical conditions, e.g. [2, 3, 6].
In the following severely simplified rigid and deformable
replicas are considered as illustrated in Fig. 2 [6, 2].

0 10 20 30
0

10

20

y
[
m

m
]

0 5 10
0

10

20

x[mm]

Figure 2: Schematic overview of some ‘in-vitro’
geometries: circular tube, exemplary rigid downstream

constrictions with or without forced movement (y
dimension), front view deformable replica.

3.2 Single sensor anemometry

A jet is generated in a flow facility consisting of an air
compressor (Atlas Copco GA7) followed by a manual
valve and pressure regulator (Norgren type 11-818-987)
enabling to provide constant air pressure. A constant
temperature anemometer system (IFA 300) is available
in order to perform flow velocity measurements. The
hot-film is calibrated against mean velocities given by
the flow meter. A fourth polynomial law is fitted to the

anemometer output voltage in order to convert mea-
sured voltage to velocity with an accuracy of 0.1m/s.
Longitudinal (x) and radial (y) velocity profiles are ob-
tained by moving a single sensor hot film (TSI 1201-
20) with a diameter of 50.8μm and a working length of
1.02mm using a two-dimensional stage positioning sys-
tem (Chuo precision industrial co. CAT-C, ALS-250-
C2P and ALS-115-E1P) with accuracy Δx = 4 and
Δy = 2μm. At each position velocity data are acquired
at 30kHz for 3s consecutively.

3.3 Two component PIV (2D PIV)

Smoke tracer particles with a mean diameter inferior to
1μm are added to the airflow. A plane within the flow is
illuminated twice by means of a laser (dual-YAG) light
sheet whereas the time delay is adapted depending on
the mean flow velocity and the magnification of imag-
ing. It is assumed that the flow particles move with local
flow velocity between the two illuminations. The light
scattered by the tracer particles is recorded on a single
frame (Lavision camera with 1376×1024 pixels). The
local displacement vector is determined for each inter-
rogation area by means of statistical methods relating
on correlation analysis with commercial software (Lavi-
sion Davis 7). It is assumed that all particles within one
interrogation area have moved homogeneously between
the two illuminations. The projection of the vector of
the local flow velocity into the plane of the light sheet
resulting in the two-component velocity vector is calcu-
lated taking into account the time delay between the
two illuminations and the magnification at imaging.

4 Results and discussion

4.1 1D anemometry of round free jet

An axisymmetrical free jet issuing from a uniform circu-
lar extension tube as depicted in Fig. 2 with diameter
d=25mm and varying length Lt is considered where the
subscript t denotes the tube length in cm. The time
averaged spatial velocity development is scanned with
1D anemometry mounted on a positioning system as
outlined in section 3.2. The assessed extension tube
lengths yield 1, 3, 9, 18 and 50cm corresponding to
Lt/d ∈ {0.4, 1.2, 3.6, 7.2, 20}. Longitudinal data along
the x direction are gathered from the tube exit up to
20d. Radial profiles along the y direction are assessed
near the tube exit and at 1.6, 3.2, 4, 4.8, 6.4, 8, 12
and 16d. Varying the tube length Lt is a simple way to
assess the influence of initial conditions corresponding
to aging or articulation on the self-similar spatial jet
development for a fixed volume flow rate of 130l/min
or Ub=4.4m/s corresponding to Re ≈ 7350. Exemplar
time averaged statistics derived from the measured in-
stantaneous velocity data are presented in Fig. 3. The
mean longitudinal velocity profiles and exemplary mean
radial velocity profile at x=3.2d are illustrated in Fig.
3(a) and 3(d). Both mean profiles prevail self-similarity
as expressed in eq. 11 although the centerline decay
constant K and model parameter α are seen to depend
on Lt/d as shown in Fig. 4 for K(Lt/d). The influence
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Figure 3: Exemplar velocity field characterisation for axisymmetric jet (Re ≈ 7350) for Lt/d 0.4 (×), 1.2 (◦), 3.6
(
), 7.2 (+) and 20 (�) cm. (b) full line: Blasius solution U/Uc = (1 − 2y/d)1/7, (c) Gaussian distribution value

(full) and (e) dotted line: Gaussian distribution of eq. 11 with α=94. (h) one dimensional velocity spectra at
x = 1.6d at maximum shear stress position y/d ≈ 0.7. Kolgomorovs (full) and Kraichnans (dotted) law are modelled

with eq. 15 with n = 5/3 and n = 3 respectively and dimensionless wavenumber k = ωd/Uc(x).
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L
t
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Figure 4: Decay rate K(Lt/d) with long pipe values at
L/d = 1180.

of Lt/d on initial conditions is illustrated in Fig. 3(b)
for the mean and in 3(f) for the fluctuating part of the
velocity. Except for Lt=1cm the initial mean velocity
profile approaches Blasius solution U/Uc = (1−2y/d)1/n

with n = 7 when Lt/d increases. The turbulence level
at the exit increases from about 10 up to 60% of the cen-
treline exit velocity when Lt/d is increased. The fluc-
tuating centerline velocity can be characterised by its
higher moments as illustrated for the centerline skew-
ness in Fig. 3(c). The higher moments converge to-
ward a constant value away from the exit for all assessed
Lt/d. Moreover in the self-similar region this constant
value approaches the value expected for a Gaussian dis-
tribution. The distance x/d needed to reach this con-
stant value increases with Lt/d in consequence with the
decreasing initial turbulence level. Moreover Gaussian
values are seen to fit in particular for larger Lt/d. In
accordance with the initial profiles the turbulence level
decreases when Lt/d increases in the radial rms profiles
as illustrated in Fig. 3(d). For the two smallest Lt/d the
flow is turbulent from the exit, while for the larger Lt/d
development of the shear layers is observed. The mea-
sured data are in agreement with the higher moments

and mean centerline velocities indicating the absence of
a potential cone for the smallest tube lengths Lt/d. A
turbulent viscosity can be estimated for the flow follow-
ing Eq. 12 from which the shear stress 〈u1u2〉 is derived
as in eq. 13. From the exemplar shear stresses shown in
Fig. 3(g) is seen that although the overall shape is the
same, Lt/d and hence initial conditions influences the
resulting shear stresses in several ways concerning the
position, amplitude and width of the two peaks and as
a consequence the slope between both peaks in accor-
dance with the changes in νT (S) causing a stretching of
the shear stresses. The one dimensional velocity spectra
Pu(k) at x = 1.6d and maximum shear stress position
y/d ≈ 0.7 is illustrated in Fig. 3(h) for dimensionless
wavenumber k = ω ·d/Uc(x). As for the shear stress the
general shape is seen to be similar for all assessed Lt/d.
The energy spectra are modelled following eq. 15 with
C2 = 0.07 for all spatial positions and all assessed Lt/d
whereas C1 varies with spatial position. Kolgomorovs
power law E(k) ∼ k−5/3 describes well the inertial part
of the spectrum while Kraichnans power law E(k) ∼ k−3

is seen to match the decay part. Hence the energy scales
can be derived. Although in particular concerning the
decay part a fine analysis reveals a faster decay for large
Lt/d compared to small Lt/d and the same way the
decay onset appears for slighty lower k-values for large
Lt/d as for small Lt/d.

4.2 2D PIV

The characterisation presented in the previous section
concerning a round free jet can be assessed in case 2D
PIV data are considered. Resulting mean and rms are
illustrated in Fig. 5 for a jet issuing from a circular tube
with d=25mm as before, Lt/d=8.8 and Re ≈ 20000.
The flow through typical configurations of ‘in-vitro’ repli-
cas depicted in Fig. 2 or ‘in-vivo’ articulator config-
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Figure 5: Mean and rms 2D velocity distribution for round free jet (Re ≈ 20000) for Lt/d=8.8: (a,d) exit up to
x/d=6.8, (b,e) 6.8 up to x/d=13.6 and (c,f) 10.8 up to x/d=17.6.
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Figure 6: (a,b,c,d) 2D PIV visualisation of jet interaction with downstream teeth shaped obstacles. (e,f) jet
formation during auto-oscillation of deformable replica.
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Figure 7: 2D PIV visualisation of typical flow
configurations: jet formation and surface impingement.

urations is qualitatively visualised in Fig. 7 for airflow
through a round constriction, a uniform constriction and
a jet impinging on a surface. Some more particular cases
are illustrated in Fig. 6. In particular the interaction
of the jet issuing from a uniform constriction with a
downstream obstacle is illustrated. Different positions
of the obstacle with respect to the jet as well as multiple
obstacles are shown. Finally two images during a oscil-
latory cycle of the deformable replica taken at closure
and opening are shown. Important issues such as flow
separation and Coanda effect can be observed as well as
the influence of the obstacle shape and placement.

5 Conclusion

Velocity field characterisation by means of 1D anemom-
etry and 2D PIV is assessed quantitatively in case of a
round free jet and qualitatively in case of constrictions
and downstream obstacles likely to occur ‘in-vivo’. The
obtained visualisations indicate 2D PIV as an impor-
tant tool to quantify flow-obstacle interactions relevant
to typical vocal tract configurations.
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