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In many aural (acoustic) signal processing tasks, humans are known to perform better than automated 
classification systems. For such applications, it may be beneficial to identify how humans relate different sounds 
to one another and incorporate that information into an automatic classification system. This paper presents a 
method for using psychoacoustic information from a human listening experiment to generate a novel kernel 
function that can be used to improve automated signal classification. We have conducted a similarity-based 
listening experiment on a series of impulsive-source sonar echoes. In this experiment, humans were asked to rate 
perceived similarity between pairings of target and clutter echoes. These ratings combine to form a similarity 
matrix that reflects the underlying distance measure humans use when judging these echoes. This similarity 
matrix is a perceptual equivalent to the similarity matrix used in modern kernel methods used in automatic 
classification systems (e.g. Support Vector Machine). By fitting an appropriate distance metric to the results of 
the perceptual experiment we can identify novel, perceptually-inspired, kernel functions. This paper presents a 
series of new approaches for the identification of a perceptual kernel function. We then compare the 
classification performance between these perceptual kernels and more standard kernel functions.  

1 Introduction 

For many aural (acoustic) signal processing tasks, humans 
are known to perform better than automated classification 
systems. For such applications, it may be beneficial to 
identify aspects of the approach used by humans and 
integrate those aspects into an automatic classification 
system. In applications such as speech recognition, superior 
human performance could be the result of high level 
processing (e.g. language models); in other applications, 
such as identification of transient signals, the key to human 
performance may lie closer to the periphery, perhaps in the 
identification and extraction of useful acoustic signal 
features for classification. Current features used in transient 
signal classification do not always provide acceptable 
performance; accordingly, new features are desired that 
yield the superior classification performance observed in 
humans. This research focuses on the acoustic feature 
problem as it relates to distance metrics between signals. 
Specifically, we utilize the results of a similarity-based 
listening experiment to examine short duration transient 
signals from active sonar systems with the goal of learning 
new, potentially useful, distance measures to aid automatic 
classification.  
In order to understand how humans perform an aural 
classification task, detailed information regarding a sound’s 
perceptual quality is needed. Most quantitative approaches 
describing perception of sounds use some measure for 
perceptual distance between sounds [1]. These perceptual 
distance measures are usually gathered directly from a 
similarity experiment in which subjects are asked to rate the 
similarity between pairs of sounds. This type of experiment 
provides a metric describing a subject’s underlying 
perceptual feature space. Typically, this perceptual space is 
estimated using a technique called multidimensional scaling 
(MDS) [2]. This type of analysis allows the researcher to 
compare the estimated perceptual space with hypothesized 
signal features. Any features that correlate well with this 
space are said to be perceptually significant. In practice 
though, no test feature ever fully correlates to this space and 
the researcher is forced to choose the “best” perceptual 
feature. This problem is due to the limited set of commonly 
known features at the researcher’s disposal. In addition, this 
approach does not provide an avenue to identify new 
features derived solely from the listening experiment data. 
Recently, a more systematic approach to identify 
perceptually relevant features was introduced [3]. This 

approach provides an avenue to identify new perceptual 
signal features drawn from a general class of signal 
representations. This framework broadens the choice made 
by the researcher to an appropriate class of signal 
representations as opposed to a specific list of features. By 
following this method, new features can be identified that 
play an important role in perception. This paper expands 
upon this approach by removing the requirement of MDS to 
identify the perceptual space by directly estimating the 
distance metric used by subjects in a similarity-based 
listening experiment. Directly estimation a perceptual 
distance metric instead of the underlying features space 
allows errors introduced by multidimensional scaling to be 
avoided. 
The rest of the paper is organized as follows. The next 
section describes two similarity-based listening experiments 
that were conducted using acoustic signals from impulsive-
source active sonar systems. In section III two approaches 
are introduced for identifying a novel kernel function from 
perceptual similarity data. Section IV presents the 
application of these approaches on the results of the sonar 
listening experiment. Finally, in section V conclusions and 
future work are discussed. 

2 Listening Experiment 

The purpose of these experiments are to collect aural 
similarity measures from human responses to active sonar 
target and clutter echoes in order to explore the perception 
of these types of underwater sounds. 

2.1 Data 

The signals used in the following experiments are short 
duration sonar echoes from two impulsive-source active 
sonar systems (System A and system B). Detections from 
both systems were recorded and labeled as either a true 
target or false target (clutter) based on the known location 
of all the targets. This information provides ground truth for 
ongoing research in automatic classification. The “hard-
case clutter” subset of each dataset is a collection of false 
target detections that represents all false targets that were 
misclassified by an automatic classifier. This clutter subset, 
along with detected true targets were collected and used to 
perform two listening experiments, one using data from 
system A and one from system B. 
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2.2 Experimental Setup 

Task: Each subject was presented two sounds in succession. 
The subject was then asked to rate how similar the sounds 
were on a scale of one to five in experiment one, and one to 
ten in experiment two. A rating of one indicated the sounds 
were very similar while a rating of five/ten indicated the 
sounds were very different. After receiving instructions the 
subjects were given five “practice” trials in order to get a 
sense of the task. These practice trials were not included in 
the results or analysis. 
Subjects: Sixteen subjects were recruited from the staff of 
the Applied Physics Lab at the University of Washington. 
None of the subjects had operational experience in sonar 
systems. Their initial understanding of the sonar 
classification problem ranged from truly naive to detailed 
technical understanding of sonar signal processing. 
Previous experiments showed that all subjects were able to 
perform target/clutter discrimination significantly above 
chance [4]. 
Stimuli: In experiment one, a set of 50 targets and 50 
clutter echoes from system A were randomly chosen from a 
database of greater than 200 echoes. Even with only 100 
stimuli, the number of pair-wise combinations to be judged 
by each subject would have been 4950. In order to 
accommodate this large number, the set of pairings was 
randomly divided into four subsets with each subset rated 
by two subjects. This division of large datasets into smaller 
pair-wise subsets has been shown to provide good results in 
previous MDS similarity experiments [5]. In experiment 
two, a set of 25 targets and 25 clutter echoes from system B 
were used. 
Presentation: Subjects were presented .wav files directly 
from a computer via a Matlab script. The stimulus pairs 
were presented in random order through an M-audio A/D 
board over Sennheiser HD 280 Pro headphones. Subjects 
were allowed to replay stimulus pairs as desired. 

2.3 Results 

Figure 1 shows the perceptual similarity matrix δ  that 
results from the subjects’ similarity responses to signals 
from system A. Each entry in the matrix represents one 
stimulus pair. The matrix is symmetric as only one ordering 
of the stimuli was used, and the resulting data were 
reflected about the diagonal. Each stimulus pair was 
presented to two subjects, each of whom rated the similarity 
between 1 and 5. The two subjects’ responses were added 
and entered into the matrix; thus the range of values is 
between 2 and 10. Note that the lower left quadrant of the 
matrix, corresponding to target-target stimulus pairs, has 
substantially lower values than the rest of the matrix, 
indicating more similar sounds. The values in the lower 
right quadrant (target-clutter pairs) are much higher, 
indicating that targets and clutter were usually judged more 
dissimilar. The upper right quadrant (clutter-clutter) has a 
wide range of values compared to the other two quadrants, 
which suggests that the clutter examples are not a single 
coherent class, but rather span a wide range of stimulus 
types that differ from the target class.  
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Fig.1 Aural similarity matrix for both targets (echoes 1-50) 
and clutter (echoes 51-100) from experiment 1. Note that 
only upper right quadrant corresponding to clutter-clutter 
pairings will be used in the analysis shown in this paper. 

 
The results from system B are shown in Figure 2. Each 
stimulus pair was presented to four subjects, each of whom 
rated the similarity between 1 and 10. The four subjects’ 
responses were then averaged, normalized, and entered into 
the matrix. As before, the similarity matrix is exactly 
symmetric as the results were reflected about the diagonal. 
The lower left quadrant (target-target pairings) again has 
relatively lower values while the the lower right quadrant 
(target-clutter pairings) has higher values. While this 
distinction is not as noticeable as in the previous 
experiment, there still seems to be some class separation. 
The increased variability seen in the target-target pairings 
could be due to the fact that the type of targets used in 
experiment two are not as uniform as in the previous 
experiment. With these similarity matrices, we can explore 
the attributes that are used by the subject in the perception 
of these sounds. Note that for system A only the clutter-
clutter similarity pairings will be used in the analysis shown 
in this paper. 

 

 
Fig.2 Aural similarity matrix for both targets (echoes 1-25) 

and clutter (echoes 26-50) from experiment 2.  
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3 Perceptual Kernel Identification 

Pervious methods for identifying perceptual signal 
information have required the use of multidimensional 
scaling. This technique projects a similarity matrix onto a 
low dimensional Euclidian space. Signal features are then 
correlated to this space to assess perceptual relevance. Any 
feature that correlates well to this space is said to be 
perceptually relevant. The requirement of first identifying a 
Euclidian space before features can be found adds an 
unnecessary layer of estimation. This section introduces an 
alternate approach whereby perceptual distance metrics are 
found by fitting directly to the similarity measures gathered 
from the listening experiments. We observe that the listener 
similarity matrix is a perceptual equivalent to matrices used 
in kernel methods for regression and classification such as 
kernel-based PCA [6] and Support Vector Machines [7]. 
We propose two methods for learning novel kernel function 
from perceptual similarity data. 

3.1 Kernel Feature Space 

Kernel methods use relational measures between data 
points for regression and classification instead of directly 
using signal features. These methods compute “similarity” 
between signals via a predefined kernel. These kernels are 
commonly defined as an inner product of the form 
 ( ), ( ), ( ) *i j i jK x x x xφ φ=  (1) 

where ( )φ ⋅  is a mapping from input space to a feature 
space. The power of this approach is that the underlying 
feature space does not need to be defined explicitly, only 
the function that measures the relation between signals 

( ),i jK x x  is required. 

Identifying an appropriate kernel function for a given 
problem is often a difficult task. There are many bivariate 
functions to choose from and there is no clear rule as to 
which will work best for a specific application. Three 
examples of commonly used kernels are polynomial kernels 

 ( ) ( ), ,
p

i j i jK x x x x c= +  (2) 

hyperbolic tangent kernels 

 ( ) ( ), tanh ,i j i jK x x x xκ= +Θ  (3) 

and the radial basis kernel 

 ( )
2

2, exp
2

i j
i j

x x
K x x

σ

⎛ ⎞−⎜ ⎟= −⎜ ⎟⎜ ⎟
⎝ ⎠

 (4) 

These kernels have all been shown to perform well in 
various studies, but the ultimate choice on which to apply 
remains trial and error. 
Our perceptual model we used for feature identification fits 
directly into this framework of kernel based classification. 
We assume that a human listener extracts perceptually 
relevant acoustic cues (or features) from a signal whenever 
they are asked to make judgments in an experiment. While 
we do not have direct access to these features, we can 
record the similarity measures they provide in a listening 
experiment. By finding a functional form for these 
similarity judgments we can learn a perceptually 
appropriate kernel function without needing to know the 

exact acoustic cues that are being used. This kernel 
approach allows us to bypass estimating the perceptual 
space via MDS all together. In addition to this 
computational nicety, previous studies have indicated that 
humans may use relational measures rather than specific 
features when aurally classifying sounds [8]. 

3.2 Similarity Fitting 

To learn a numeric function representing perceptual 
similarity, we follow our previous approach [3] by 
regressing over a functional model for similarity. We 
employ the following model 

 ( ) ( ) 2ˆ , ' , 'x x x xh
h

h argmin dδ= −  (5) 

where δ  is a perceptual similarity matrix and hd  is a 
numeric similarity matrix. With this approach, our goal is to 
learn a numeric similarity measure between signals that is 
as close as possible to the similarity measures provided by 
human listeners. One way to view this is as a warping of a 
numeric feature space to a new space in which signals are 
arranged according to their perceptual similarity. 

3.2.1 Linear Similarity Fitting 
The goal of similarity fitting is to learn a distance metric dh 
in a numeric feature space ( )φ ⋅  in which signals are 
separated according to perception. A linear model for dh is 

 ( ) ( ) ( ) 2

1

,
p

h i j k k i k j
k

d x x h x xφ φ
=

= −∑  (6) 

where kh  is a scaling factor for the kth dimension of the 
numeric feature space and p  is the total number of 
dimensions. This model is a weighted Euclidian distance 
measure in which each feature dimension can be weighted 
according to their fit to perceptual similarity. 
While this weighted Euclidian distance allows each feature 
dimension to be scaled, it does not allow for cross-terms 
between dimensions. Another L2 model for similarity with 
freedom to scale cross-terms is 

 ( ) ( ) ( ), T
H i j i jd x x x H xφ φ= ⋅ ⋅  (7) 

This similarity model is based on the Mahalanobis distance, 
where H  is a p p×  scaling matrix. This model for 
similarity is a weighted inner product between feature 
vectors. If H is set to the identity matrix then this measure 
is a standard inner product. In contrast to Eq. (6), this 
model assumes that perceptual similarity is numerically 
assigned such that larger numbers equate to greater 
similarity. 
 Using the Mahalanobis distance model, we now 
wish to learn the weights H that provides the best fit to 
perception, according to Eq. (5). In order to learn these 
weights, we first define a data matrix of training data as 

 

( )
( )

( )

1

2

T

T

T
N N p

x
x

x

φ
φ

φ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
 (8) 
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With this data matrix, we construct an N N×  numeric 
distance matrix T

Hd H= Φ Φ . Substituting this distance 
matrix into Eq. (5) we get 

 
2ˆ T

H
H argmin Hδ= −Φ Φ  (9) 

Using the Frobenius norm this minimization can be 
rewritten as 

 ( ) ( ){ }ˆ tr
TT T

H
H argmin H Hδ δ= −Φ Φ −Φ Φ (10) 

where tr  is the trace of the matrix. We can now solving for 
the weights H  by taking the derivative of Eq. (10) with 
respect to H  

 2 2T T T Td H
dH

δ= Φ Φ Φ Φ − Φ Φ  (11) 

Setting Eq. (11) equal to zero and solving for H , we find 

 ( ) ( )1 1ˆ T T TH δ
− −

= Φ Φ Φ Φ Φ Φ  (12) 

The above derivation provides a nice closed form solution 
for learning a perceptually-driven metric space. The derived 
distance measure Hd  can now be used as a kernel function 
in kernel based signal classification and regression. 

3.2.2 Nonlinear Similarity Fitting 
A linear warping of signals in a feature space is not always 
enough to accurately describe perceptual similarity. In this 
case a more complex nonlinear approach is required. As we 
do not have insight into all of the processes used by humans 
when judging perceptual similarity, it would be difficult to 
identify a specific nonlinear model to use. Therefore, we 
will take a nonparametric approach to nonlinear similarity 
fitting.  
Assume we wish to measure the similarity between a new 
test signal *x  and training signal ix . To measure this 
similarity, we first identify a set of training signals G  that 
are the k-nearest-neighbors of *x . We will estimate the 
similarity between *x  and ix  using a weighted sum of 
nearest-neighbors 
 ( ) ( )ˆ *, *,i j j

j G
x x x xδ β δ

∈
= ⋅∑  (13) 

where jβ  is a weighting coefficient for the jth nearest-
neighbor. The estimate of similarity between *x  and jx  is 
therefore a weighted average of similarities between ix  and 
the nearest-neighbors to *x . 
We choose the weighting coefficients such that the weights 
sum to one, making Eq. (13) a true average. We also choose 
the weights such that the closer the nearest-neighbors the 
greater the weight, according to the rule 

 
( ){ }

( ){ }
2

2

exp *,

exp *,
j

j
mm G

d x x

d x x

α
β

α
∈

− ⋅
=

− ⋅∑
 (14) 

where ( ),d ⋅ ⋅  is a numeric distance measure that is used to 
identify nearest neighbors and α  is a scaling factor. 
The advantage of this technique is that it does not impose 
any structure on the estimated similarity. It does not even 
require a numeric feature space φ . The technique only 
requires a distance measure between signals and it 

identifies which training signals are most like the test 
signal. It then leverages their known perceptual similarity 
ratings. The disadvantage of this approach is that it is 
dependent upon the training signal spanning the space of 
possible signals. 

4 Results 

In order to identify a functional distance metric that relates 
to perceptual similarity we first calculate the standard 
Euclidian distance between signals. This distance measure 
not only quantifies a baseline to compare any further 
results, but it also provides a starting point for our 
regression techniques. To measure the distances between 
signals, we first identify a simple yet descriptive feature set.  
For this feature set we choose to extract local time moments 
over each subband of a spectrogram, ( , )S t ω . That is, 

 
( )
( )

,

,

n

n t

t

t S t
t

S tω

ω

ω
=
∑
∑

 (15) 

These moments describe the average time, duration, skew, 
etc of the echo at various frequency regions. We extract the 
first three moments, n = {1, 2, 3}, from a spectrogram with 
nine subbands. This results in a 27 dimensional feature 
space. The standard Euclidian distance is calculated from 
these features and used as a point of comparison to the 
metric spaces found using similarity fitting. 
Mahalanobis Distance  
To improve upon the Euclidian distance matrix, we seek to 
identify a perceptually appropriate Mahalanobis distance 
measure. Our Mahalanobis regression technique requires 
that our similarity matrix normalized and transformed such 
that larger numbers equate to a greater degree of similarity. 
To do this, we simply take one minus the values of a 
normalized similarity matrix derived from those shown in 
Figure 1 and 2. Next we construct a data matrix Φ  using 
the local moments calculated from the clutter echoes. With 
this data matrix, a scaling matrix Ĥ  can be found via Eq. 
(12). 
Nearest-Neighbor (NN) 
Another approach to improving upon the Euclidian distance 
metric is Nearest-Neighbor distance regression. To identify 
a similarity matrix for the clutter signals using this 
approach we employ a leave-one-out cross validation 
strategy. First we designate a testing signal from the total 
set of signals. Nearest-neighbors are then calculated from 
the feature space of local moments. Next, the test echo’s 
similarity to all other echoes is calculated using Eq. (13). 
This process is repeated for every clutter echo in the 
dataset. 
To compare each of these approaches we calculate the 
correlation between perceptual similarity and distances 
calculated using the Euclidian, Mahalanobis and Nearest-
Neighbor metrics. This comparison between distance 
measures is referred to as the alignment between matrices 
[9].  
Table 1 summarizes the results from both experiment 1 and 
2. The table shows the alignment between the perceptual 
similarity matrices and the three distance measures. In both 

Acoustics 08 Paris

2755



 

experiments the Mahalanobis and Nearest-Neighbor 
distance measures improve the alignment over a standard 
Euclidian distance. These new distance measures provide a 
better functional representation of perception. In both cases 
the Mahalanobis approach achieved the best result.  
 

  Euclidian Mahalanobis  NN 
Experiment 1 0.34 0.84 0.54 
Experiment 2 0.61 0.93 0.81 
Table 1 Alignment between the perceptual similarity and 

numeric distance matrices.  

5 Conclusions 

Kernel methods for regression and classification describe 
signals not based on a set of features, but on relational 
measures between signals. In this paper, we demonstrated 
how this description of signals is analogous to the results of 
perceptual similarity experiments that are commonly used 
to identify signal features. We then proposed two methods 
for learning a perceptual kernel (distance metric) that depict 
how humans relate signals to one another. Mahalanobis 
distance regression identifies this kernel function using a 
linear parametric regression while Nearest-Neighbor 
distance regression identifies the kernel using a completely 
nonlinear nonparametric approach. These methods 
transform a standard feature space such that signals are 
arranged according to perceptual distances. This approach 
provides a framework for uncovering new perceptually-
inspired kernel functions from listening experiment data. 
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