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We have measured the band structure of Lamb waves propagating in 2D phononic crystals. Different cases were 
investigated. First we have studied the case of phononic slabs with very high contrast between the scatterers and 
the matrix. The samples are made of 200 µm silicon plates with air holes lattices drilled throughout. Whatever is 
the symmetry of the lattice, square or centered rectangular, broad band gaps open at first and second reduced 
Brillouin zone edges. We have also studied the phononic film deposited on a homogeneous substrate. The 
phononic film is made of cylindrical iron scatterers embedded into a copper background; the substrate is a 
700 µm silicon plate. The propagation is along the crystallographic direction [100] of Si. At low filling fraction, 
a frequency band gap for the antisymmetric mode arises at reduced Brillouin edge. At high filling fraction, a 
band gap opens also on the symmetric branch. Experimental data are then compared to theoretical predictions 
obtained using a plane wave expansion method. 

1 Introduction 

As for the photonic crystals, which are their optical 
counterpart, there has been during the past few years a 
growing interest in phononic crystals (PC’s). These are 
artificial media made of a two- or a three-dimensional 
periodic arrangement of inclusions, embedded in a host 
matrix (1D periodic structures are a special kind of 
phononic crystals which is rather called superlattices). It is 
now well established by a large number of works [1-5], that 
absolute frequency stop bands may occur in these systems, 
provided that the elastic properties of the materials making 
up the heterostructure are sufficiently contrasted. Up to 
now, most of these works have adopted a theoretical or 
numerical approach to study these artificial materials and 
several teams have calculated the band structures of CP’s, 
focusing on the dependence of the stop band(s) on both 
geometrical parameters (filling fraction, symmetry of the 
lattice, dimensionality of the CP…) or physical parameters 
(mass density, elastic constants…).  Most of the situations 
one can imagine have been explored: fluid/solid [6] or 
solid/fluid [7], solid/solid [8], solid/vacuum [9] …, high 
[10] or low contrasts [11], bulk [12] or surface acoustic 
waves [13] propagating in 2D or 3D PC’s. In addition to 
this abundant theoretical activity, several calculation 
schemes have been proposed: plane waves expansion, finite 
elements methods, scattering theories and owing to this 
huge work, the community is now able to anticipate the 
acoustical response of almost any kind of heterostructure. 
Experimental works are less common. In this work, we 
have used a noncontact experimental technique, based on 
the use of lasers, for measuring the dispersion curves of 
Lamb waves propagating in slabs. Indeed, these structures 
are well suited to confine and to guide the elastic energy in 
between the free surfaces. Moreover, frequency gaps for 
both symmetric and anti-symmetric Lamb modes have been 
theoretically predicted and deserve therefore an 
experimental investigation. Different situations were 
explored. 
First, we have measured the magnitude of the gaps which 
opens in the anti-symmetric Lamb mode A0, propagating in 
PC’s exhibiting very high contrasts between the 
background and the inclusions. The magnitudes of the gaps 
were measured for different filling fractions and different 
symmetries. Then, we have tried to answer the question to 
know whether Lamb waves still undergo band gaps when 
only the free surface is patterned. To this end, we used the 
same technique to measure the dispersion curves of samples 
constituted by a phononic film deposited onto a 

homogeneous substrate. We then compare the results for 
different values of the filling fraction.  

2 Experiments 

2.1 Samples 

Three silicon plates (~200 µm thick) were patterned by 
chemical etching, with air holes arrays drilled throughout). 
Two samples had the centered rectangular symmetry with 
different filling fractions, namely 21.0=f  and 56.0=f  
respectively. The third sample had the square symmetry 
with 21.0=f . For each sample, the lattice parameter was 

mm1=a  and the ratio thickness to lattice parameter 
2.0=ah . Note that the chemical etching in silicon is an 

anisotropic chemical reaction leading to square pyramidal 
shaped holes (see Fig. 1). We accounted for this particular 
shape in the calculation of the filling fraction. 
 

 
Fig. 1 Image of a silicon/air phononic plate (200 µm thick) 

with the centered rectangular symmetry. 

In addition to these air/silicon samples, we have also 
elaborated two other samples constituted by a thin 2D 
patterned film (4 µm thick) deposited onto a homogenous 
silicon plate (700 µm thick). The structured film was a 
square lattice of cylindrical iron inclusions embedded into a 
copper background; the lattice parameter was mm1=a  in 
both directions of the propagation plane and the filing 
fractions was respectively 25.0=f  and 56.0=f . For 
both types of samples (air/silicon or Fe/Cu film on silicon), 
the rows of inclusions were parallel to the crystallographic 
directions [100] and [010] of silicon. 
Since our experimental setup allows measuring the 
dispersion curves of the PC’s, recalling the structure in the 
reciprocal space is important. This is done in Fig. 2 where 
we show the two first Brillouin zones and the reduced 
Brillouin zone (shaded area) for the two symmetries we 
examined. To compute the band structures, we defined a 
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basis ( )21 e,e,O , with the origin O at the center of an 
inclusion. For the square lattice of period a, the primitive 
vectors of the reciprocal space are given as ( )0,2: a

π1b  

and ( )a
π2,0:2b . The centered rectangular lattice is 

deduced from the square lattice by simply translating by 

2
a  along 1e , one row of inclusions over two. This yields 
the following primitive vectors in the reciprocal space 

( )aa
ππ ,2:1b  and ( )aa

ππ ,2: −2b . We show also on the 

left panel of this figure, images of the three air/Si structures 
under study. 

 
Fig.2 Left panel: images of the three air/Si structures under 

study defined by the primitive vectors in real space 
(arrows): centered rectangular arrays with (a) f = 0.21, (b) 

f = 0.56 and (c) square array with f = 0.56. Right panel: 
schematic representation of the first (red lines) and of the 

irreducible (shaded area) Brillouin zones defined by 
primitive vectors in the reciprocal space (arrows). The 

coordinates of points Γ1, X1, M2, J2 for the centered 
rectangular lattice are respectively (0,0), (5π/4a,0), (2π/a,0), 

(11π/4a,0). Coordinates of points Γ1, X1, Γ2, X2 in the 
square lattice are (0,0), (π/a,0), (2π/a,0) and (3π/a,0) 

respectively. 

2.2 Experimental setup 

We used a laser ultrasonic setup to measure the band 
structures of these PC’s. Our experimental technique is 
based on the laser generation and detection of acoustic 
pulses with a broad spectrum. Broadband acoustic pulses 
were generated at the surface of the sample by focusing 
light pulses issued from a frequency-doubled (532 nm) Q-
switched Nd:YAG through a cylindrical lens. The line 
shaped spot was about 5 mm in long and 70 µm across. In 
all the experiments described in this article, the excitation 
zone was located a few millimeters ahead of the PC itself, 
in a region of the sample free from any air inclusion or iron 
cylinder. 
The time dependence of the surface displacements was 
recorded at regularly spaced distances from the acoustic 

source, using a Michelson interferometer in which the light 
source was a He-Ne laser. One beam of the interferometer 
was focused on the sample (acting as one of the mirrors of 
the interferometer) to a spot size of ~15 µm, whereas the 
reference beam was reflected by an actively stabilized 
mirror. The interference pattern was collected by a high-
speed photodiode and then digitized at 100 MS.s-1 by a 
digital oscilloscope. Both the cylindrical lens and the 
sample were mounted on translation stages in such a way 
that the probe beam could be scanned across the sample 
with a precision of about 1 µm. This noncontact technique 
allowed us to record the displacement field at any point at 
the surface of the sample and to resolve hence fine details 
of the interaction of the acoustic waves with the PC. Note 
that this interferometric method is only sensitive to the 
normal component of the displacements but not to the in-
plane components. 

2.3 Experimental results 

We show in Fig. 3 a typical time-space dependence of the 
normal displacement recorded at the surface of the PC 
made of a thin phononic film on silicon. The probe beam 
was focalized on spots regularly spaced at the surface of the 
PC, in between two consecutive rows of inclusions where 
the reflectivity of the sample is not modulated. As a 
consequence of the non-linear dispersion the excited 
modes, which appear in Fig. 3 as much contrasted colored 
stripes close to the origin, broaden with increasing position. 
This is a key feature of elastic modes guided in a plate and 
clearly suggests that, in the present case, the recorded 
displacements are actually Lamb waves. 

 
Fig. 3 Displacements field pattern in arbitrary units, 

recorded at the surface of a 4 µm thick 2D phononic film 
(iron cylinders embedded in a copper background), 

deposited onto a silicon plate. The repeat distance in both 
directions of the plane and the filling fraction are a=1 mm 

and f=0.25 respectively.  

We deduced the dispersion curves of the PC slabs by 
performing a time-space Fourier transform of the data. We 
were able to investigate Lamb waves with wave numbers 
ranging from 0 (Γ in the reciprocal space) to 7000 m-1, 
beyond the critical point M2 in the reciprocal space of the 
centered rectangular array or beyond the point Γ2 in the 
reciprocal space of the square network (Fig. 2). The Fourier 
magnitudes were resolved with accuracies of δν=0.05 MHz 
for the frequency and δk=300 m-1 for the wave number. The 
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results are displayed in Figs. 4a-b (centered rectangular 
lattice) and Fig. 4c (square lattice). 
 

 
Fig. 4 Experimental dispersion curves along Γ1-X1 of the 

phononic plates deduced through a 2D fast Fourier 
transform from the measured displacement fields. The color 

scale is logarithmic. Filling fractions are f =0.21 (a) and 
f = 0.56 (b) for the centered rectangular array, f = 0.56 for 
the square array (c). The solid lines are for the calculated 

Lamb mode A0 propagating along the crystallographic axis 
[100] of a 200µm thick silicon homogeneous plate. 

Since our detection scheme is based on a Michelson 
interferometer, it is only sensitive to the out-of-plane 
component of the ultrasonic waveform. This is the reason 
why we could only detect the lower order anti-symmetric 
mode A0 which has a large out-of-plane component and can 

therefore be easily observed by the current laser ultrasonic 
setup. On the contrary, the symmetric mode S0, while 
actually excited as well as A0, cannot be detected. Indeed, 
in the vicinity of Γ (i.e. at low k and low frequency), S0 is 
longitudinally polarized. In addition to the dispersion 
curves of mode A0, a branch with a negative slope is clearly 
observable in the range [ ]a

π,0  in Fig. 4c (i.e. along Γ1-X1). 

To understand the nature of this mode, one should 
remember that our broad band excitation scheme allows for 
both the excitation and the detection of elastic waves with 
wave vectors outside the first reduced Brillouin zone. 
Therefore, folded modes are not expected to appear in the 
2D Fourier transforms of the displacements fields; we 
rather attribute this branche to the signature of elastic waves 
reflected by the edges of the sample and propagating 
backward. This is further supported by the measured 
amplitude of this mode which is about two orders of 
magnitude less than the one measured along the branche in 
the range [ ]aa

ππ 2,  (i.e. X1-Γ2), with the same 

frequencies. Indeed, these backward waves are detected 
after they have traveled over a distance twice as long as the 
forward waves and have therefore undergone a strong 
attenuation through diffusion by the air-holes inclusions. 
Another interesting experimental circumstance is when the 
inclusions have a height much less than the penetration 
depth of the SAW. In that case, the SAW propagates partly 
in the periodical structure and partly in the homogenous 
underlying substrate; the formation of a band gap in the 
Rayleigh branch has already been predicted [5] in such a 
system or in the quite similar situation where the surface is 
corrugated over a depth two order of magnitude less than 
the wavelength [14] but to the best of our knowledge, it has 
never been experimentally observed for Lamb waves. 
To give experimental evidence for the opening of band gap 
in Lamb modes for such a system, we have measured the 
band structures of two PC’s, each constituted by a thin 2D 
patterned film (4 µm thick) deposited onto a homogenous 
silicon plate (700 µm thick).  
The dispersion curves were then obtained by performing a 
time-space Fourier transformation of the measured 
displacements. The results are displayed in Fig. 5 where we 
show in a logarithmic colour scale the Fourier amplitude 
normalized to unity, as a function of both frequency and 
wave number in the ΓX direction of the 2D Brillouin zone 
(corresponding to the propagation along one side of the 
square unit cell). Five normal modes are observed in the 
frequency range investigated (0-10 MHz). Indeed, in 
addition to both lower-order symmetric (labelled 0S ) and 

anti-symmetric modes (labelled 0A ), three higher-order 
Lamb waves with non-zero cut-off frequencies are excited. 
We have then computed the dispersion curves of a 700 µm 
thick silicon uncovered free plate and compared the results 
to the experimental data (see lines in Fig. 3a). The 
comparison shows that their overall shapes are not altered 
by the thin phononic film, as it can be anticipated 
considering the respective thicknesses of the substrate and 
the film. Actually, coating the silicon plate with a Fe-Cu 
layer breaks the symmetry of the problem and strictly 
speaking, the lower modes are no longer pure symmetric 
and anti-symmetric Lamb modes. However, for a very thin 
film on plate, it is expected that the coating affects the 
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dispersion curves essentially at the centre of the Brillouin 
zone [16], where the wavelength is much larger than the 
repeat distance and where, consequently, the phononic film 
must be treated as an effective medium. 
The salient feature in Fig. 5a is the Fourier amplitude of the 
branch S0 which cancels to zero for frequencies around 
4 MHz and wave numbers 1cm10 −= πk  (see the inset in 
Fig. 5a). This clearly reveals the opening of a stop band at 
the edge X of the first Brillouin zone for lower-order 
symmetric Lamb waves. The measured values of the central 
frequency and of the width of this stop band are 
respectively ν=4.2 MHz and Δν=0.6 MHz. No stop band is 
observed along A0 or along the higher-order modes for this 
sample. 

  
Fig. 5 Experimental dispersion curves along Γ-X of the 

reduced Brillouin zone, of a thin phononic film on a silicon 
plate deduced from the data displayed in Fig. 3 through a 

2D-FFT. The color scale is logarithmic. The filling fraction 
are f=0.25 (a) and f=0.56 (b). The lines are for to the 

calculated Lamb modes propagating along the 
crystallographic axe [100] of a 700 µm thick silicon plate 
(full lines: antisymmetric modes; dashed lines: symmetric 

modes). The parameters used in the calculation are: 
329.2=Siρ , 11

11 10657.1 ×=C , 11
12 10637.0 ×=C  and 

211
11 N.m10799.0 −×=C . Inset: enlargement of the mode 

S0 for frequencies around 4 MHz and 1cm10 −= πk . 

To confirm the opening of a band gap on S0 and to illustrate 
the importance of the filling fraction in both its formation 
and its magnitude, we show in Fig. 5b the measured 
dispersion curves for the sample at f=0.56. Despite a less 

good NS  ratio, two gaps are clearly visible for this 

sample: in addition to the gap on S0 at 1cm10 −= πk  and 

ν=4.2 MHz, a stop band comes out now on the branch 0A  

at 1cm20 −= πk , ν=3.9 MHz  with a magnitude of about 

Δν=0.8 MHz. The width of the frequency gap on 0S  is 
estimated to be Δν=1.3 MHz, about twice as large as for the 
sample at f=0.25, indicating that the magnitude of the 
frequency gap behaves against f the same way for Lamb 
waves and for Rayleigh waves [15]. 
On the other hand, our data show that the velocities of both 
symmetric and antisymmetric Lamb waves are those of the 
uncoated silicon plate. Depending on the filling fraction, 
frequency gaps appear on the lower-order symmetric and 
antisymmetric branches, for integer values of the 
normalised wave vector π

ka  and frequencies in the MHz 

range, as already reported for bending waves in the kHz 
range [17]. On the other hand, the magnitudes of the stop 
bands depend on both the geometrical and the physical 
parameters of the phononic film. This should therefore 
allow engineering systems in which the central frequency 
and the magnitude(s) of the stop band(s) are settled on 
independently and in a controlled way, through a suitable 
choice of the materials. 
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