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The classical u-p formulation for vibro-acoustic problems is very convenient for experimental vibro-
acoustic modal analysis since the physical variables are directly those which are measured by operators.
In this particular context, the objective is to identify from experimental measurements a reduced model
which has the same behaviour as the measured one. The complex mode shapes which are identified
using this technique must satisfy a properness condition. When they do not verify it, they should be
modified to be able to represent the behaviour of a physical system. Some techniques have been proposed
in order to develop a strategy to obtain the modified eigenshapes, but this is a quite difficult point
because of the unsymmetric topology of the equations. In this paper, a symmetric formulation is used
in order to be able to directly apply the classical methodology which has been developed for structural
modal analysis to obtain the physical reduced system. The methodology is described and compared
with the u-p formulation, in terms of efficiency and precision, in particular when some absorbing devices
are considered. All results are first presented on an ideal numerical test-case, and applications on
experimental data are finally shown.

1 Introduction

Coupled vibro-acoustics behaviors can either be needed
in some cases like musical instruments, or not desired in
situations like coupled vibrations between internal fluid
domain and body of automotive structures. The topic
of this paper is the vibro-acoustical behavior of coupled
systems, constituted by a vibrating structure enclosing
a fluid domain (internal vibro-acoustics).

Vibro-acoustics modal analysis [2] allows one to experi-
mentally identify coupled modes of the system, following
the methodology which is classical for structural dynam-
ics, when the behavior of the vibrating structure is sup-
posed to be decoupled from the acoustic phenomenon.
Modal synthesis consists in representing the behavior of
the system on a given frequency band using an experi-
mental model, built using a reduced modal basis, consti-
tuted by a given number of identified modes. This iden-
tification generally leads to the determination of com-
plex modes, that can include errors coming from several
physical, environmental or numerical uncertainties. The
levels of these errors can be of several magnitude orders
depending in particular on the experimental context, on
the know-how of the operator, and on the algorithms
used for identification, but in all cases, even small er-
rors on complex modes can lead to large differences. In
particular, if one is interested by matrices reconstruc-
tion, this is a crucial point.

A mathematical property allowing one to insure that the
system is able to be represented by a discrete equivalent
system is called properness of complex vectors. This
condition is very well detailed in ref. [1]. In the cases in
which complex vectors do not verify that condition, the
author presents a methodology to perform small modi-
fications on the vectors in order that they verify it. In
this paper, an extension of this approach is presented
for vibro-acoustical modal analysis. A non-symmetric
formulation is first presented, before comparing it with
a symmetric one.

2 Problem statement and modal

decomposition

2.1 Movement equations

Discretizing an internal vibro-acoustical problem using
the natural fields for the description of the structure
(those which can be directly measured), i.e. displace-
ment for the structure and acoustic pressure for the cav-
ity, leads to the following matrix system [3]:[

Ms 0
LT Ma

]
︸ ︷︷ ︸

[M ]

{
ẍ
p̈

}
︸ ︷︷ ︸

{q̈}

+

[
Cs 0
0 Ca

]
︸ ︷︷ ︸

[C]

{
ẋ
ṗ

}
︸ ︷︷ ︸

{q̇}

+

[
Ks −L
0 Kf

]
︸ ︷︷ ︸

[K]

{
x
p

}
︸ ︷︷ ︸

{q}

=

{
Fs(t)

Q̇a(t)

}
︸ ︷︷ ︸

{f(t)}

,
(1)

in which {x} is the vector of generalized displacements
of the structure, {p} is the vector of acoustic pressures,
[Ms] is the mass matrix of the structure, [Ma] is called
”mass” matrix of acoustic fluid (its components are not
homogeneous to masses, the name is chosen for anal-
ogy with structural denomination), [Ks] is the stiffness
matrix of the structure, [Ka] is the ”stiffness” matrix
of fluid domain, [L] is the vibro-acoustic coupling ma-
trix, [Cs] and [Ca] respectively represent structural and
acoustic losses. This formulation includes the hypothe-
sis that there is no loss at the coupling between struc-
tural and acoustic parts, and that internal losses can
be represented using equivalent viscous models. {Fs(t)}
is the vector representing the generalized forces on the
structure, while {Q̇a(t)} is associated to acoustic sources
(volume acceleration) in the cavity.

2.2 Complex modes for vibro-acoustics

One way to solve the system (1) for steady-state har-
monics is to use modal decomposition. The non-symmetric
character of the matrix system implies that right and left
modes must be identified. This can be done using the
space-state representation of the system:

[U ] {Q̇(t)} − [A] {Q(t)} = {F (t)} (2)
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in which:

[U ] =

[
C M
M 0

]
, [A] =

[
−K 0
0 M

]
{Q(t)} =

{
q(t)
q̇(t)

}
, {F (t)} =

{
f(t)
0

} (3)

The eigenvalues of this problem can be stored in the
spectral matrix Λ:

[Λ] =
[
\λj\

]
(4)

The j-th eigenvalue is associated to:

• a right eigenvector {θRj} such as (Uλj−A) {θRj} =

0, in which {θRj} =

{
φRj

φRjλj

}
. Storing the

eigenvectors (in the same order as the eigenval-

ues) in the modal matrix [θR] =

[
φR

φRΛ

]
, the

following relationship is verified:

[U ] [θR] [Λ] = [A] [θR] (5)

• a left eigenvector {θLj} such as {θLj}
T

(Uλj −

A) = 0, in which {θLj} =

{
φLj

φLjλj

}
. Storing

the eigenvectors (in the same order as the eigen-

values) in the modal matrix [θL] =

[
φL

φLΛ

]
, the

following relationships are verified:

[U ]
T

[θL] [Λ] = [A]
T

[θL] or [Λ] [θL]
T

[U ] = [θL]
T

[A]
(6)

The orthogonality relationships can be written using
2n arbitrary values to build the diagonal matrix [ξ] =[
\ξj\

]
:

[θL]
T

[U ] [θR] = [ξ] or [θL]
T

[A] [θR] = [ξ] [Λ] (7)

The modal decomposition of the permanent harmonic
response at frequency ω is finally:

{Q(t)} = [θR] ([ξ] (jω[E2n]− [Λ]))
−1

[θL]
T
{F (ω)}eiωt

(8)
in which E2n is the 2n× 2n identity matrix and F (ω) is
the complex amplitude of the harmonic excitation. This
relationship can also be written using the n degrees of
freedom notations in the frequency domain:

{Q(ω)} = [φR] [Ξ] [φL]
T
{f(ω)} (9)

with:

[Ξ] =

[
\ 1

ξj(iω − λj)\

]
(10)

For vibro-acoustics, it can easily been shown that there
is a relationship between right and left eigenvectors [2]:

If {φRj} =

{
Xj

Pj

}
then {φLj} =

{
Xj

−Pj/λ2
j

}
. (11)

This means that only the right eigenvectors extraction
is necessary to obtain the full modal basis of the system.
The previous relation can also be written as:

If [φR] =

[
X
P

]
then [φL] =

[
X

−PΛ−2

]
. (12)

3 Properness of complex modes

3.1 Properness for structural dynamics

The reader is invited to refer to the paper [1] in order to
be familiar with the properness condition in structural
dynamics.

3.2 Properness for vibro-acoustics

Obtaining the properness condition in the case of a non-
self adjoint system is almost instantaneous, starting from
orthogonality relationships (7):

[U ]
−1

= [θR] [θL]
T

(13)

or [
C M
M 0

]−1

=

[
0 M−1

M−1 −M−1CM−1

]

=

[
φRφT

L φRΛφT
L

φRΛφT
L φRΛ2φT

L

]
,

(14)

and
[A]

−1
= [θR] [Λ] [θL]

T
(15)

or [
−K 0
0 M

]−1

=

[
−K−1 0

0 M−1

]

=

[
φRΛ−1φT

L φRφT
L

φRφT
L φRΛφT

L

]
.

(16)

It is then clear that the properness condition for a non-
symmetric second order system can be written as:

φRφT
L = 0 (17)

Once this relationship is verified, the matrices can be
found using the inverse relations:

M =
(
φRΛφT

L

)−1
(18)

K = −
(
φRΛ−1φT

L

)−1
(19)

C = −MφRΛ2φT
LM (20)

For the particular vibro-acoustic case, left eigenvectors
are linked to right ones, and the properness condition
can be written using only the right complex eigenvec-
tors: [

XXT −XΛ−2PT

PXT −PΛ−2PT

]
= 0. (21)

3.3 Methodologies for properness enforce-

ment

When the complex modes are available from experimen-
tal identification, one can use equations (18) to (20) in
order to find the reduced model which is supposed to
have the same behavior as the measured one. The fact
is that in general, the modes do not verify the properness
condition (21). In reference [1], a methodology to en-
force properness is proposed. The objective is to find the
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approximate complex vectors, which are as close as pos-
sible to the identified ones, and that verify the proper-
ness condition. It is shown that for structural dynamics,
an explicit solution can be found, requiring only to solve
a Riccati equation. For vibro-acoustics, one has to solve
the following problem:

Find X̃ and P̃ minimizing
∥∥∥X̃ −X

∥∥∥ and
∥∥∥P̃ − P

∥∥∥
while

⎧⎪⎪⎨
⎪⎪⎩

X̃X̃T = 0

X̃P̃T = 0

X̃Λ−2P̃T = 0

P̃Λ−2P̃T = 0,
(22)

in which X and P are two given complex rectangular
matrices and Λ is a given diagonal complex matrix. This
problem can be re-written using 4 Lagrange multipliers
matrices δi (i=1 to 4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 =

{
X̃

P̃

}
−

{
X
P

}
+ 1

2

[
δ1 + δT

1 δ2

δT
2 0

]{
X̃

P̃

}

− 1
2

[
0 δ3

δT
3 δ4 + δT

4

] {
X̃Λ−2

P̃Λ−2

}
0 = X̃X̃T

0 = X̃P̃T

0 = X̃Λ−2P̃T

0 = P̃Λ−2P̃T .
(23)

In this case one can not obtain an explicit solution like
in the case of structural dynamics [1], but some approxi-
mate solutions can be found [5] that allow one to obtain
better results than those corresponding to direct inver-
sion.

3.4 Experimental test-case

An experimental test-case has been performed on a set
of vibro-acoustic measurements on a guitar [4]. The
so-called A0 and T1 complex modes have been exper-
imentally identified using measured frequency response
functions (FRFs), by a classical technique [6], and one
wants to obtain a two degrees-of-freedom (dofs) equiv-
alent system that is able to represent the dynamic be-
havior of the instrument. The figure 1 represents the
results obtained using several methodologies. The black
continuous curve is the reference one, constituted by the
response associated to the identified complex modes (ob-
tained using modal composition). The grey continuous
line corresponds to the direct identification of matri-
ces using equations (18) to (20). It is clear in that case
that the identified complex vectors do not correspond to
those of a 2-dofs equivalent system. The dashed line cor-
responds to the methodology called ”diagonal” in which
structural and acoustical parts of the complex vectors
are modified independently one from another. This im-
plies the cancellation of diagonal terms of equation (21).
Finally, the dotted line corresponds to the methodol-
ogy called ”over-properness”, in which the four terms
of equation (21) can be canceled, while two other ones
are also imposed with zero values, which are not the-
oretically required [5]. This methodology implies good
improvements, compared with direct reconstruction of
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Figure 1: Methodologies for properness enforcement on
guitar measurements

matrices, but has some theoretical drawbacks, like the
two non-required canceled terms, and the final recon-
structed matrices that do not respect the vibro-acoustic
topology described by equation 1. The reason is that
the proposed solutions are not exact solutions of prob-
lem (23), which is not as simple as in the structural
case of the non-symmetry of the chosen formulation.
Nevertheless, the methodology allows one to find the re-
duced model, identified from experimental data, using
one structural dof and one acoustical dof:

M =

[
4.71× 10−2 −3.84× 10−9

5.81× 10−2 2.67× 10−7

]
,

K =

[
4.29× 104 −6.39× 10−2

−1.78× 103 1.43× 10−1

]
,

C =

[
3.90 3.88× 10−5

1.17 −3.99× 10−5

]
.

(24)

This set of matrices allows one to have a correct recon-
struction of frfs, with coherent stiffness and mass ma-
trices (even if the topology is not correct), but one can
observe that there is a physical problem with the damp-
ing term associated to the pressure degree of freedom,
which is negative.

4 Symmetric formulation for vibro-

acoustics

4.1 Matrix formulation

Some alternative vibro-acoustic formulations can be used
instead of the one corresponding to equation 1, like ex-
plained in references [3, 7] for example. Among them,
one can use a modified velocity potential ϑ as the vari-
able describing the fluid behavior, such as p = −ϑ̇. This
change implies that the measured value is no longer the
one which is directly in the formulation, which is in prin-
ciple not a problem since one can easily go back to pres-
sure, but there is a strong advantage, the problem is
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now symmetric:[
Ms 0
0 −Ma

] {
ẍ

ϑ̈

}
+

[
Cs L
LT −Ca

]{
ẋ

ϑ̇

}
+

[
Ks 0
0 −Ka

] {
x
ϑ

}
= 0.

(25)
The potential problems associated to the non-positivity
of the system or to practical force excitation of the
acoustical part are avoided since this formulation will
be used only for the inversion of the problem, while the
classic unsymmetric form can be used for the complex
modes identification step.

4.2 Properness for symmetric formula-

tion in vibro-acoustics

Following the same methodology as above, the proper-
ness condition can be written using the identified com-

plex modal matrix [Ψ] =

[
X
Θ

]
:

[
XXT XΘT

ΘXT ΘΘT

]
= 0, (26)

which is equivalent to:[
XXT XΛ−1PT

PΛ−1XT PΛ−2PT

]
= 0. (27)

This is quite different from (21). This point will be
addressed in the next part. Since the formulation is
symmetric, one can directly use the results given in ref-
erence [1] in order to enforce the properness condition
on the identified complex modal matrix Ψ. Denoting
Ψ̃ the modified modal matrix verifying the properness
condition, its expression is:

Ψ̃ =
(
En − δδ

)−1 (
Ψ− δΨ

)
, (28)

where the Lagrange multiplier matrix δ is solution of:

ΨΨT − δΨΨT −ΨΨ
T
δ + δΨΨ

T
δ = 0. (29)

4.3 Numerical and experimental test-case

The numerical test-case presented in [5] has been used
to test the symmetric version of the procedure used to
enforce the properness condition. The figure 2 shows
the results associated to this numerical test. The guitar
experimental data have been also used to test this ver-
sion of the enforcement procedure, like shown in figure
3. One can observe that in both cases, no real improve-
ment is added by the symmetric formulation, even if no
approximation is done using the enforcement method-
ology, which was the case when the unsymmetric for-
mulation was used. The reason for that is explained
in the next part. Concerning the guitar test-case, the
equivalent system is:[

4.71× 10−2 2.90× 10−6
2.90× 10−6 −2.71× 10−7

]{
ẍ

ϑ̈

}
+

[
3.14 −6.00× 10−2

−6.00× 10−2 −2.77× 10−6

] {
ẋ

ϑ̇

}
+

[
4.28× 104 7.57× 10−1

7.57× 10−1 −1.41× 10−1

] {
x
ϑ

}
= 0.

(30)
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Figure 2: Methodologies for properness enforcement on
numerical test-case, including the symmetric

formulation
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Figure 3: Methodologies for properness enforcement on
guitar measurements, including the symmetric

formulation

Going back to initial M , K and B matrices is not trivial,
since the (2, 1) term in the mass matrix (of the (x, ϑ)
formulation) would be associate to the third temporal
derivative of x (in the (x, p) formulation), which is not
included in the initial formulation. The opposite case
correspond to the (2, 1) term in the stiffness matrix of
the (x, p) formulation, that would theoretically be asso-
ciated to a primitive of the displacement in the (x, ϑ)
formulation. A simplified approach is then to chose null
values in matrices according to the topology of the ini-
tial problem:

M =

[
4.71× 10−2 0
6.00× 10−2 2.71× 10−7

]
,

K =

[
4.28× 104 −6.00× 10−2

−1.78× 103 1.41× 10−1

]
,

B =

[
3.14 0
0 2.77× 10−6

]
.

(31)

Acoustics 08 Paris

2049



Like observed in figures, this system, even if it has phys-
ical values and a coherent topology, is not as efficient as
the one obtained in the previous section for the equiva-
lent representation of the vibro-acoustic behavior of the
system. The reason why has started to appear in the
above lines: the properness condition (21) does not take
into account the topology of the vibro-acoustic system
(1).

5 Full properness

The equation (21) is not sufficient to insure that the
topology of the reconstructed matrices is the same as
for the initial vibro-acoustic system (1). The reason
is that applying the methodology on the n-dimensional
system only permits to have the correct null terms in the
state-space representation including n×n null matrices.
If one want to obtain the null matrices of the vibro-
acoustic initial formulation, the structural and acoustic
blocs must be expressed using the partition of the eigen-
vectors. One can resume the set of equations using a
distinction between the expression of reconstructed ma-
trices: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ms = (XΛXT )−1

Ma = −(PΛ−1PT )−1

L = −MsXΛPT Ma

Ks = −(XΛ−1XT )−1

Ka = (PΛ−3PT )−1

Cs = −MsXΛ2XT Ms

Ca = MaPPT Ma,

(32)

and the relationships that the eigenvectors and eigen-
values must verify:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XXT = 0
XPT = 0
XΛ−1PT = 0
XΛ−2PT = 0
PΛ−2PT = 0
(XΛXT )−1XΛPT (PΛ−1PT )−1

+(XΛ−1XT )−1XΛ−3PT (PΛ−3PT )−1 = 0
PΛXT (XΛXT )−1XΛ2XT

+PPT (PΛ−1PT )−1PΛXT − PΛ2XT = 0.

(33)

This full set of equations explains the reason why the
symmetric formulation does not improve the results com-
pared with the approximate properness enforcement method-
ologies proposed with the non-symmetric formulation:
in the symmetric case, only three of the above condi-
tions are verified, while four of them are enforced in the
non-symmetric case. It is clear that solving this set of
equations using the same methodology as the one used in
reference [1] will not lead to an explicit solution. Even
the search of an approximate solution using all equa-
tions is not easy, because of the topology of equations, in
which the unknowns are rectangular complex matrices.
At this step, the authors propose to use the approx-
imations proposed in the above parts and to perform
a choice between the solutions using some a posteriori
criterion, like errors on reconstructed FRFs.

6 Conclusion

In this paper, the notion of properness has been ex-
tended to the case of vibro-acoustics. Some methodolo-
gies for properness enforcement using complex identi-
fied vectors have been proposed, based first on a non-
symmetric formulation, and on a symmetric one. Both
approaches do not lead to the same results because of
the particular topology of matrices describing the vibro-
acoustic problem. Nevertheless, they allow one to obtain
some experimentally identified reduced models and cor-
responding matrices associated to a set of degrees of free-
dom. Finally, it is shown that the proposed methodolo-
gies only permit to verify a part of the equations among
the whole set, which can be enough in some cases.
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de l’Université du Maine, for the fruitful discussions and
for allowing us to use their measurements data, which
have been used to identify the complex modes presented
in this paper.

References

[1] E. Balmès, ”New results on the identification of
normal modes from experimental complex ones”,
Mechanical Systems and Signal Processing, 11(2)
(1997)

[2] K. Wyckaert, F. Augusztinovicz, P. Sas, ”Vibro-
acoustical modal analysis: Reciprocity, model sym-
metry and model validity”, J. Acoust. Soc. Am.,
100(5), 3172-3181 (1996)

[3] H. Morand & R. Ohayon, ”Fluid Structure Inter-
actions”, J.Wiley & Sons (1995)

[4] E. Foltête, M. Ouisse, J.L. Le Carrou & F. Gau-
tier, ”Analyse modale expérimentale de systèmes
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