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Abstract

While Biot’s theory seems well adapted to model the acoustical waves propagation in cancellous bone,
some of its predictions do not agree with the experimental results. The excess of attenuation of the fast
wave is one of these discrepancies. In this paper we propose a modified Biots model which takes into
account the fluctuations of the physical parameters and their correlations. As a result of this model,
we show that this excess of attenuation is due to several processes: i) classical Biot’s attenuation, ii)
scattering leading to the extension of the wave path, iii) mode conversion. Some comparison between
experimental results and numerical simulations are proposed.

1 Introduction

When an acoustic wave propagates in porous media a
part of the energy of the wave is reflected and the other
is transmitted or dissipated. To improve the under-
standing of attenuation processes in porous materials as
spongy bone, several theoretical concepts for ultrasound
propagation was been adapted or developed,including
the Biot theory or the model of the equivalent fluid. The
Biot theory of mechanical wave propagation in porous
media is now a well accepted model. This model de-
scribes the displacements of fluid and structure at the
passage of a mechanical disturbance. It takes into ac-
count the effects of three couplings between fluid and
structure, and it can be shown that the Biot theory is
the most general model to describe the propagation lin-
ear acoustic waves in porous media saturated.
During the last decade, the Biot model has been pro-
posed to describe theultrasound propagation in the tra-
becular bones. However, its predictions does not agrees
with experimental results. The most important descrep-
ancy is the attenuation coefficient of the fast wave. For
that, some authors propose to forsake this model.
In this paper we propose an modified Biot model based
on the Müller Gurevich model [1] which explains the
deviations between experimental results and theoreti-
cal predictions. It is based on the modifications of the
propagation due to the inhomogeneities of the porous
medium. At the interfaces between inhomogemenous
parts, the conversion modes process reallocates energy
of the fast and slow waves and because of their quite
different damping, it entails an overdamping of the fast
wave.

2 The Biot theory

During the last decade, to improve the ultrasound tech-
niques for the diagnosis of osteoporosis, several models
where developed with the aim to explain the experimen-
tal results about sound propagation through cancellous
bone. More specifically, the motivations of these inves-
tigations where the dependence of ultrasounds velocity
and attenuation on physical parameters of the structure
of bones such as density, porosity, bulk moduli.
When the structure of a porous material is not rigid,
the wave propagates in solid structure and in fluid fill-
ing the pores of the porous medium. The Biot’s model
is now the most attractive tool to describe these phe-
nomena [2]. One of its main successes is the predic-
tion of three modes of propagation: two longitudinal
modes (slow and fast waves) and a transversal mode.

Later, Plona confimed the prediction of the slow wave
[3]. In addition, it takes into account different couplings
between fluid and solid structure: i) inertial coupling,
modelled by the dynamical tortuosity of the medium,
which is responsible of an additional term of density ii)
viscous coupling (due to the viscosity of the fluid) and
iii) potential or elastic coupling (due to the reciprocity
principle of fluid-structure interactions). So, the scat-
tered acoustical waves (reflected or/and transmitted) by
a porous medium contain several informations about the
interactions between fluid and solid which are correctly
described by the Biot’s théory. These reasons argue in
favour of use of ultrasound to characterize the state of
trabecular bones and to observe the variations of conse-
quences of osteoporosis [4].

2.1 Equation of motion

There are several methods to setup the equations of the
motion of the solid and of the fluid in the framework of
the Biot’s theory. The method of homogenization ap-
pears as the most rigorous one and is often quoted as
a justification a posteriori of the other methods. The
Lagrangian formulation given by Johnson in [5] shows
that the Biot’s model of propagation is the most general
theory for a linear description of the interactions fluid
structure in diphasic porous media. The Biot’s equa-
tions of motion of fluid and solid are

∇ · σ̄ = ρü + ρf ẅ, (1)

−∇pf = ρf ü + Ỹ (t) ∗ ẇ, (2)

Ỹ (t) = m
∂

∂(t)
δ(t) +

η

k0

˜F (t). (3)

where σ and pf is given by :

σij = 2µεij + (λcθs − αMς)δij (4)

pf = M(−αsθ + ς) (5)

with ρ the total density of the porous material, ρf is fluid
density, u is displacements of the solide, w is the relative
fluid-solid displacements w = φ(U−u), φ is the porosity,
pf is the fluid pressure, ς is the variation of the fluid
content given by : ς = −∇.w, Ỹ (t) is the viscodynamic
operator, m a mass correction coefficient derived from
the microvelocity field reduces to : m = τ∞

φ ρf , τ∞ is the
so-called tortuosity τ∞ = 〈v2〉 /ẇ and α is the coefficient
of Biot-Willis given by : α = 1 −Kd/Ks whereKs, Kd

and Kf are respectively the bulk moduli of the solid,
of dry porous solid and fluid. When we substitue the
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expressions of σij and pf in the Biot equations we obtain
the matrix equation:(

L
(1)
ij L

(2)
ij

L
(3)
ij L

(4)
ij

)(
uj
wj

)
= 0, (6)

where the operators L(n) are given by:

L
(1)
ik = ρω2δik + ∂jG

(
δjk∂i + δik∂j − 2δij∂k

)
, (7)

L
(2)
ik = ρfω

2δik + ∂iC∂k, (8)

L
(3)
ik = L

(2)
ik , (9)

L
(4)
ik = qω2δik + ∂iM∂k. (10)

The response of the porous medium to the perturba-
tion −(F 0

i δ(ri−r′i)f0
i δ(ri−r′i))t constitutes the solution

(uiwi)t of this system of equations when the right hand
side of the equation (6) is −(F 0

i δ(ri−r′i)f0
i δ(ri−r′i))t. It

is obtained by using the Green’s tensor 0G of the system
in the form:(

ui
wi

)
=
(

0GFik
0Gfik

0Gfik
0Gwik

)(
Fk
fk

)
. (11)

more generally we have :(
ui(r)
wi(r)

)
= (12)∫

dr′
(

0GFik(r− r′) 0Gfik(r− r′)
0Gfik(r− r′) 0Gwik(r− r′)

)(
Fk(r′)
fk(r′)

)
.

2.2 Equations of Biot in random medium

When a wave propagates in a random medium, the coef-
ficients of the wave equation are random variables. So,
in such media the wave propagation is described by a
stochastic equation. Thus, in (6) we can write the op-
erators L(n) in the following form :

L(n) = L̄(n) + L̃(n) (13)

where L̄(n) is the mean value of L(n) and L̃(n) is the
fluctuation of this value acting as a perturbation. From
this definition < L̃(n) >= 0. Then, from (6) one has :(
L̄

(1)
ij L̄

(2)
ij

L̄
(3)
ij L̄

(4)
ij

)(
uj
wj

)
= −

(
L̃

(1)
ij L̃

(2)
ij

L̃
(3)
ij L̃

(4)
ij

)(
uj
wj

)
,

(14)
the solution of which is given by :(

ui
wi

)
=
(

u0
i

w0
i

)
(15)

+
∫
dV

(
GFik Gfik
Gfik Gwik

)(
L̃

(1)
kj L̃

(2)
kj

L̃
(3)
kj L̃

(4)
kj

)(
uj
wj

)
.

The Keller method [6] leads to write the Green function
G of the random medium in the form:(

GFim Gfim
Gfim Gwim

)
=
(

0GFim
0Gfim

0Gfim
0Gwim

)
+
∫
dV (16)(

0GFij
0Gfij

0Gfij
0Gwij

)(
L̃

(1)
jk L̃

(2)
jk

L̃
(3)
jk L̃

(4)
jk

)(
GFkm Gfkm
Gfkm Gwkm

)
.

This relation is more briefly noted:

G = G0 +
∫
G0L̃G. (17)

By iteration, this relation becomes :

G = G0 +
∫
G0L̃G0 +

∫ ∫
G0L̃G0L̃G0 + · · · . (18)

The averaged Green tensor is given by :

Ḡ = G0 +
∫ ∫

G0QḠ, (19)

where the ”mass operator” Q is given by the relation

Q =

〈
L̃G0L̃+

∫
L̃G0L̃G0L̃+

∫
· · ·

〉
. (20)

The equation (19) is the analogue of the equation of
Dyson. An approached solution of this equation is ob-
tained by truncating the expression of operatorQ. For
example with the first order one obtains:

Ḡ = G0 +
∫ ∫

G0
〈
L̃G0L̃

〉
Ḡ = G0 +

∫ ∫
G0Q(app)Ḡ.

(21)
The matrix Ḡ is the averaged Green tensor. The matrix
Q(app) is the matrix of the operators defined by:

Q(app) =

(
Q

(1)
ij Q

(2)
ij

Q
(3)
ij Q

(4)
ij

)
=

〈
L̃G0L̃

〉
. (22)

This approximation needs only the second order statis-
tics of the random variables. It is thus valid if one as-
sumes weak fluctuations of parameters i.e. if |L̃(n)/L̄(n)| �
1. From this result it follows that the effective wave
number of the fast wave is given by

k̄p = kp

(
1 + Σ2 + Σ1k

2
ps

∫ ∞
0

rB(r)eikpsrdr
)

(23)

were Σ1 and Σ2 depend on cross-correlation functions of
the parameters of the medium, B(r) is the correlation
function of the random variables which is assumed to be
the same for each parameter, kp is the wave number in
the homogeneous host medium and kps =

√
ıωη/κ0N .

Here ω is the angular frequency, κ0 is the permeability
of the porous medium and N depend only on the bulk
moduli of solid and fluid.

3 Attenuation

When a acoustical wave propagates in a inhomogenous
medium the number of wave is modified compared to
that of the wave in the host medium, in particular the
multiple reflections of the wave on the inhomogeneities
are the source of interferences which attenuate its am-
plitude, in addition, the path of the wave between two
points of the medium is modified because of the multiple
diffusions, contributing to the increasing of the attenu-
ation and to a change of the phase velocity [3]. In a
medium with localized scatterers, the modes conversion
transfers the energy from fast wave to slow wave which
is strongly attenuated. If we characterize the effective
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attenuation of the wave by the length leff ,we can write
in first approximation:

1
leff

=
1

lhom
+

1
linter

+
1

lpath
+

1
lconv

(24)

where lhom is the length characterizing the attenuation
in the homogeneous host medium, linter characterizes
the attenuation due to the interferences, lpath charac-
terizes the attenuation due to the increase lengthening
of the wave path in the porous medium, and lconv char-
acterizes the attenuation due to the mode conversion. It
follows from the previous section that the phase velocity
is now given by

v ≈ ω

k̄p

(
1− Σ2 + Σ1<{kps}2

∫ ∞
0

rB(r) sin (<{kps}r)dr
)
.(25)

So, in an inhomogeneous porous medium, the changes
in the phase velocity of the fast wave are due to i) the
medium dispersion proprtional to Σ1, ii) a shift (Σ2)
which reduces v. In the same way we can express the
wave attenuation as the inverse of the quality factor Q.

Q−1 = 4Σ1<{kps}2
∫ ∞

0

rB(r) cos (<{kps}r)dr
)
. (26)

Numerical simulations were performed from (25) and
(26). In a first time we fixe the cross-correlation func-
tions of the medium parametres. The correlation func-
tion B(r) is the exponential function B(r) = exp (|r|/a),
were a the correlation length which is related to the
mean distance between inhomogeneities. In Fig.1 and
Fig.2 one can see the effects of changes of correlation
length on the phase velocity and attenuation. In partic-
ular one sees that attenuation is a quite sensible to the
correlation, i.e. to the inhomogeneities concentration.

Fig.3 and Fig.4 show the variations of phase veloc-
ity and attenuation corresponding to a porous medium
in which the porosity is a random variable. In trabec-
ular bone, the porosity may be a good indicator of the
stage of a disease as osteoposity. As the porosity inter-
venes in the definition of several bulk moduli through
the Gassmann equation, the fluctuations of its value lead
to large variations of the phase velocity and attenuation
of waves.

4 Conclusion

In this paper we have proposed a modified Biot model
to improve the fitting of experimental results and Biot’s
model theoretical predictions. When correlated inho-
mogeneities are taken into account, we show that the
phase velocity is reduced. This is due to the lengthen-
ing of path wave induced by the multiple scattering of
the wave. At the same time, the attenuation of waves is
increased by sevral processes, the most important being
the energy reallocation in the fast and the slow waves
by modes conversion.
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