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In room and city acoustics respectively noise immission prognosis,  ray or beam tracing methods are well ap-
proved – but the problem of the neglected diffraction is still unsolved in general. The author´s successful ap-
proach of 1986 based on Heisenberg’s uncertainty principle has now been generalized, embedded in a full ray 
tracing program and combined with the more efficient beam tracing technique. The results have been compared 
with Svensson´s exact wave-theoretical secondary edge source model. Reference cases were the semi-infinite 
screen as well as two parallel wedges forming a slit. For most cases, now also for finite distances, the agree-
ments are again very good (less than 1dB). So, with some restrictions, it seems that indeed diffraction of sound – 
like light - may be handled as flow of particles, even for higher order diffraction. To avoid the feared explosion 
of computation time with that, a beam re-unification may now be achieved by Quantized Pyramidal Beam 
Tracing (QPBT). Higher order diffraction, however, opposite as announced in the abstract to this congress, has 
not yet been evaluated up to now. This and other results are not presented in this paper but will probably have 
been  presented by the oral presentation on this congress.  
 

1. Introduction 

In computational room acoustics as well as in noise immis-
sion prognosis (‘city acoustics’) the mirror image source 
method (MISM) [1], more efficiently, ray tracing (RT) or 
beam tracing (BT) are used. A version of RT is the sound 
particle method [2] which, rather than the 1/r²-law, uses the 
more efficient statistical evaluation of the immitted intensi-
ties in detectors crossed by the particles. These are methods 
for the optical limiting case of short wavelengths. So, their 
main deficiency is the lack of diffraction simulation. There-
fore, it is aimed at to introduce diffraction as a  module into 
ray tracing. The requirements are: 
- the ‘detour law’ [3] should be fulfilled; 
- efficient handling of arbitrary diffraction orders and com-
binations with reflections should be possible (fig.1); 
- a pure diffraction module without accounting for flanking 
walls (reflections are to be handled by another module); 
- at least an approximation for short, but not very short 
wavelengths. 
The crucial algorithmic problem is: With any recursive 
MISM or split-up of rays with diffraction, the number of 
rays, and hence the computation time, explodes. Much 
more efficient than the MISM is a straight forward method 
as RT. But with RT, the computation time still explodes 
with diffraction. The basic idea for solving this explosion 
problem is a re-unification of (‘similarly running’) rays. 
This is only possible if rays are traced in a quasi-parallel 
and iterative re-distribution process. Also, rays have to be 
spatially extended, i.e. rather beams, in order to exploit 
their overlap, to interpolate and to re-unify them. So, even 
more convenient is a hybrid method as BT. ‘Beams are mir-
ror image sources with built-in visibility limits’, so, BT is 
an efficient version of the MISM.A solution to all these 
problems is Quantized Pyramidal Beam Tracing (QPBT) by 
Stephenson [4].    
A pre-condition for any effective pyramidal beam tracing is 
a subdivision of the room into convex sub-rooms. On the 
transparent dividing ‘walls’ diffraction events at ‘inner 
edges’ may be effectively detected (fig.1). 
Due to the use of ray tracing as the framework, basic hy-
potheses are: 
- diffraction happens only near edges (mainly  edges that 
protrude into a room),  
- incoherent (energetic) superposition can be used. 
 
 

 
 
 
 
 
 
 
 
 
 
Fig. 1: General model: Multiple diffractions in a (2D) room 
which is subdivided into convex sub-rooms: ‘transparent’ 
dividing walls are dashed; a ray is scattered/diffracted sev-
eral times on these ‘walls’ near edges (only one path is 
drawn) 
 
Known numerical methods appropriate for higher order dif-
fraction simulation are the Geometrical Theory of Diffrac-
tion (GTD) [5], or its improvement, the Uniform Theory of 
Diffraction (UTD) [6]. Both are high frequency approxi-
mations that may in principle be combined with the MISM. 
Funkhouser utilized a very fast version of BT for auraliza-
tion in room acoustics [7], even including diffraction in 
form of the UTD [8]. But still, with higher order reflections 
and diffractions the computation time explodes.  
One of the basic ideas for solving the problem of computa-
tion time explosion with diffraction is:  
- not all combinations and paths of diffracted/ reflected rays 
or particles are important, only those where particles pass 
close to edges,  
- the bending effect on a sound particle – the diffraction 
probability- should be the stronger the closer the by-pass-
distance.  
 
This idea is inspired by Heisenbergs Uncertainty-Relation 
(UR), known from quantum mechanics: hpy y ≈Δ⋅Δ   
where yΔ  is the by-pass distance to the edge, interpreted as 
the ‘uncertainty’ in y, ypΔ is the impulse uncertainty at the 
point y in space and h is Planck`s constant/ π2 . Dividing the 
UR by h (using de Broglie’s  equation yy khp Δ⋅=Δ ) 

yields 1≈Δ⋅Δ yky . kk y /Δ  is then the uncertainty of the 
direction of the wave vector in the y-direction. Analogous 
equations are valid for the other coordinates. This is valid 
without any atomic constant. So, the UR should be valid for 
light and also for sound ray propagation algorithms. This 
idea has been successfully utilized in numerical methods 
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for light diffraction to optimize optical systems [9, based on 
10]. The UR based sound particle diffraction model, how-
ever, was found independently by the author [11, now de-
scribed in much more detail in 12], however in 1986 only 
for receivers at infinite distance. 
 
This paper describes the results of  
-  the generalization of the UR based particle diffraction 
model to more general cases,  
- the embedding in a full ray tracing program,  
- the more efficient beam tracing  
compared with empirical [3] or analytical [13] reference 
models.  

2. The Sound Particle Diffraction Model 

There are two basic concepts in the implementation of this 
method:  
-the ‘Diffraction angle probability density function’ 
(DAPDF) and  
- the ‘Edge Diffraction strength’ (EDS).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: The ‘detour into wave theory’:  
Each moment a particle passes an edge (‘Beugungskante’)  
of a screen (‘Schirm’) at a distance a  (above), it ‘sees’ a 
slit ( figure in the middle with the DAPDF on the right hand 
side). According to the uncertainty relation a certain ‘Edge 
Diffraction Strength’ (EDS) causes the particle to be dif-
fracted according to the  ‘Diffraction Angle Probability 
Density Function’ (DAPDF= ( )εD ) The lower figure 
shows some angle window (‘Zählfenster’) used to count the 
diffracted particles and to add up their energies to the 
transmission degrees. 

The idea of that DAPDF (with non-split-up particles) 
emerges from the UR. But it is more efficient (and physi-
cally equivalent) to split up the rays into new ones with 
partial energies according to the DAPD (because the effort 
to trace many rays from the source to the diffracting edges 
vanishes.) 
After a ‘detour into wave theory’, i.e. the split-up according 
the DAPDF, again  rays are traced and superposed ener-
getically (fig 2). 

2.1. The DAPDF 

The DAPDF (see fig.3.) is derived from the Fraunhofer dif-

fraction at a slit 22 /sin vv∝ , where επ ⋅⋅= bv , valid 
for parallel incident and diffracted rays. The 
DAPDF,(averaged over a wide frequency band, similar as 
over an octave-band averaged  as for ‘white light’),  is 
roughly approximated  

  ( ) ( )2
0 21/ vDvD +=  with ε⋅⋅= bv 2 ,        (1) 

where b is the apparent slit width in wavelengths, ε  is the 
deflection angle and D0 is a normalization factor such that 
the integral over all deflection angles is 1. The D0-factor 
must be computed for each edge by-pass since its value de-
pends on b and the angle limits of the wedge. In the fol-
lowing all distances are expressed in wavelengths.  
 
 
 

Fig. 3: Left: the derivation of the DAPDF (axes are the de-
flection angle (‘Ablenkwinkel’) and the transmission de-
gree in dB) showing the function 22 /sin vv∝  (dashed 
curve) and the function ( )vD  as fat curve 
 
 
 
 
 
 
 
 
 
 
Fig.4: An energy histogram for a bypass distance of 1/2 and 
a slit width of 3. 75% of the incident energy is deflected 
into the angle range of -15…15°, only 2% into backward 
directions (<-90°, >+90°).  
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2.2. The EDS 

To develop a modular model which is applicable also to 
several edges that are passed near-by simultaneously, the 
‘Edge Diffraction Strength’ (EDS(a)) is introduced such 
that the EDS of several edges may be added up to a total 
TEDS ,                  ∑= iEDSTEDS   (2) 

To be used as input for the DAPDF, an ‘effective slit width’ 
is               TEDSbeff /1= .   (3) 

By self-consistency-considerations (a slit should re-produce 
the energy distribution of itself) it turns out that   
   ( ) ( )aaEDS ⋅= 6/1    (4) 

So, with only one edge, a by-passing particle would ‘see’ a 
relative slit-width of beff=6a. 
(A somewhat improved approach for the DAPDF was used 
in [11], now described in [12]. In [10], in stead of equ. 1 it 
is proposed a gaussian distribution and an evaluation only 
of the distance to the nearest edge.)  

2.3. Method of evaluation 

Many – typically 10…100 – particles are shot over the 
edge. In the first approach, their energies are counted in 
‘angle windows’ on the other side to compute from that an 
angle dependant transmission degree of the semi-infinite 
screen and to compare it with reference functions. 
The transmission degree is defined as T = intensity with the 
diffraction of an obstacle relative to the intensity in free 
field where ‘intensity’ in 2D is ‘sound power/width’ instead 
of ‘power/surface’ but the proportion of T is the same in 
3D. In order to simulate also finite receiver distances, the 
particle diffraction model has been combined with a full 2D 
sound particle tracing algorithm utilizing a grid of quadratic 
particle detectors [2].instead of the angle windows (fig.2).  
 

 
Fig. 5: Above: The superposition of angle-dependant 
DAPDFs in dB of single particles from a source at -10λ  
passing at different distances (see fig. 2) summing up to the 
screen transmission function (bottom, as in fig. 7). 

3. Results of ray diffraction experiments 

For a systematic analysis, the 2D ray tracing was evaluated 
for sources and receivers (detectors of convenient sizes) at 
finite distances of 1,3,10,30,100 (wavelengths) and 15 an-
gles -84…+84° (in steps of 12°, seen from the edge), ap-
plied to the semi-infinite screen, in total 375 combinations. 
This was first compared with the known angle function of 
the screen [3].  
At the first go (without any parameter fitting), the agree-
ments with the reference function (Maekawa) were very 
good for almost all cases, also for finite distances (standard 
deviation of <0.5dB, curves similar as in fig.7). It turned 
now out also that the reciprocity principle is fulfilled (same 
levels with a permutation of source and receiver). This is 
not self-understanding, hence, this is an important indica-
tion of the correctness of the model. It turned further out 
that, numerically, a decisive quantity is the number of inci-
dent particles within a close by-pass distance, amin (which 
should be about 0.1λ ), and a maximum by-pass distance of 
amax= 7λ (see fig.2). Beyond that, direct transmission may 
be performed. The orientation of the ‘diffracting surface’ 
‘above’ the screen (dashed lines in fig. 1) has only a weak 
influence (at +-45° less than 1dB). This is important for the 
practical implementation of the model in sub-divided 
rooms. 

4. From ray to beam diffraction  

The re-unification capability of QPBT requires beam trac-
ing rather than particle tracing to be combined with diffrac-
tion. The number of secondary diffracted beams can be re-
duced considerably with beams. A thorough analysis 
showed that, in order to reach a certain numerical accuracy, 
particles require a much (at leat 10 times) higher number of 
crossings of each detector than beams do, since for mirror 
image sources, there is no stochastic variation and the 1/r² -
distance law may be applied to compute the immitted inten-
sities at the receiver points (in 2D a 1/r-law). Any ray trac-
ing algorithm can be equivalently be replaced by a beam 
tracing algorithm which is much more effective. For one 
receiver, only one loop over all incident beams is necessary, 
each only with one diffracted beam, not a secondary loop 
over each time an additional number of secondary particles. 
(fig.6.) 
 
A criterion for the valid by-pass distance of a beam is the 
middle ray’s distance within the beam. 
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Fig. 6: 2D beam diffraction, specialized for the screen 
(black wedge in the middle): Typically 10…100 beams 
(‘fans’ in 2D) (left, pink) arrive within the decisive by-pass 
distance range of 0…7λ (here exaggerated). The direct 
sound passes above (yellow). To reach all receivers beams 
are split up into each typically 10..100 secondary beams.  
To the right the diffracted beams: the darker the colour the 
higher the intensity –and this mainly in straight forward di-
rections (see fig. 2, resp. the DAPDFs in fig. 3);  
bottom right the beams relevant for one specific receiver 
are drawn elongated.  

5. Results 

For the 5*5*15 source-receiver position combinations, 
comparisons were carried out between the beam formula-
tion and the former ray diffraction.  
- The agreements were very good (standard deviation of 
only 0.67dB), but beam tracing is in the order of more than 
10 times faster than ray tracing with same accuracy.  
- To exclude any numerical error due to the finite number 
of beams, a comparison with an ‘infinite number’ of beams 
i.e. a (numerical) beam integration was also carried out.  
The difference between those results was on average only 
0.38dB standard deviation (figures look similar as fig.7) 
- The direct comparison between beam tracing and the 
Maekawa screen transmission functions yielded a standard 
deviation of 0.74dB,  
- the comparison with Svenssons’s exact coherent secon-
dary edge source model as analytical reference model [13] 
yielded only 0.39dB! (see fig.7). 
(Svensson succeeded in deriving analytically directivity 
functions based on an exact time-domain solution for an in-
finite and finite rigid wedge. In contrast to the UTD, the 
model is valid also for lower frequencies, but only for hard 
wedges. Letting edge-sources re-radiate following edges, 
the method can be recursively applied for higher orders. 
The impulse responses of this reference model were Fourier 
transformed and the transfer functions octave band aver-
aged.) 
 
 
 
 
 

 
Fig. 7: Example of a comparison between beam tracing 
(green) and Svensson’s reference method (blue, falling to 
the left)  The transmission degree in dB is given as function 
of the receiver angle, to the left the ‘shadow’ region:. (red 
curve, rising to the left: deviation* 10) (1000 incident * 
1000 diffracted particles, vs. 70 incident * 31 diffracted 
beams within amax=7λ , source and receiver distance: 10λ , 
source at y=0). 
 
Also, the influence of the inner wedge angle was investi-
gated: For smaller inner angles their influence is low, but 
for the case of 90°, compared with 0°, the differences in the 
transmission levels are up to 4dB  (mean difference are 
typically 0.4dB). However, in Svensson’s reference model, 
hard flanking walls are assumed whereas in the interaction 
model based on the UR only the position of the edge is 
relevant, not any flanking walls.  
 
Finally, the diffraction at two edges in parallel forming a 
slit was investigated (as a self-consistency-test). So, now 
the EDS of the two edges were added (Eqs. 2-4). 
 

Fig. 8: Addition of the DAPDFs of beams crossing a slit of 
two edges (below); (Source and receiver distance = 99λ ); 
in the middle (green and violet) the sum i.e. the total trans-
mission as the function of the receiver angle (compared 
with the free field transmission for the same sound power 
as incident on the slit); above the deviation curve). 
 
The reference function was the DAPDF of the respective 
slit width itself. The result was again a very good agree-
ment – at least for far sources and receivers (fig.8.). (For 
nearer distances, i.e. non-parallel incidence, the agreement 
can not be good, as the classical slit diffraction function is 
not valid). 
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6. Conclusions and Outlook 

The agreements were in all cases very good.. Consequently, 
it seems like Heisenberg’s UR may be applied also to 
acoustics and sound may be handled as particles even with 
diffraction. In principle, it should not be a problem to ex-
tend the presented model to 3D and to multiple diffractions 
(if the edge = the z-axis is infinite, then ∞→Δz  and there 
is no reason for any diffraction in the z-direction, we do 
correctly get 0=Δ zk ). Edge diffraction happens only in 
the area perpendicular to the edge, it is basically a 2D ef-
fect. 
 
The strong frequency dependence of diffraction (influenc-
ing the question what are ‘near’ edges) remains problem.  
This concerns also the question of the limiting distance of 
edges  for ‘independent’ subsequent diffractions. Also the 
assumption of incoherent superposition will cause difficul-
ties in critical cases.  
 
 
Results of a generalization to higher order diffraction (for 
example the ‘thick wedge’) will probably have been  pre-
sented  orally at the congress in Paris. 
 
A combination of beam diffraction procedures with QPBT 
seems now possible without explosion of computation time. 
The application to room and city acoustics comes closer. 
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