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Because noise levels are logarithms of additive variables, the usual numerical processings are not suitable for 
them, (here 60 + 60 ≠ 120 !). One has to deal with them differently, following another rules which may be called 
the ‘logic of levels’. Of course the question is correctly resolved with the energetic mean, but it fails as soon as 
one has to deal with variances and covariances implying levels in dB. Some solutions may be developed which 
are necessarily approximate compromise between the logic of levels and the usual arithmetical logic. Here we 
introduce a new statistic, the h-dispersion which has many technical properties of variance and fortunately takes 
account of the logarithmic status of data. This new compromise may be used for levels in the case of design of 
experiments such as a one-way design for acoustical comparisons (before and after an operation for instance), 
and also, partially, in the case of two-way designs. However this approximation is an improvement in relation to 
crude ANOVA on levels.  

1 Introduction 

In environmental acoustics, the principle variables with 
which we are working are levels, noise, pressure, power, … 
of the general form Ls = 10 log s/s0 [5], and they are 
respective logarithms of other magnitudes. Of course they 
are also numerical data, but as logarithms they can not 
follow the same calculations’ rules than with ordinary 
numbers ; very logically they have to respect other specific 
rules and their set may be called “the logic of levels”, [7, 8, 
9]. The question is often raised when one has to deal with 
statistical calculations and processings which follow the 
arithmetic rules by default, and one has to develop 
compromises between arithmetic and logarithmic logics of 
calculations.  
Previously we introduced an “equivalent variance” as an 
order 2 (statistical) moment convenient and useful in 
regressions techniques ; here we propose another statistic 
for levels Li which has some analogous properties with the 
variance, and which may be used for the populations’ 
comparisons as we usually do in design of experiments and 
analysis of variance, but here between levels’ populations. 

2 Some recalls on statistics and logic  
of levels 

2.1 About the mean of levels 

The mean of levels is not veritably problematic because one 
deals straightaway (and fairly and physically) with the 
energetic mean 10 log{1/I ∑i 10Li/10} of several levels Li 
and the arithmetic mean of additive levels powers 10Li/10 
(under acoustical independancy). This is the equivalent 
level, and also in mathematics the h-mean h-1{1/I ∑i h(yi)} 
of yi data for every bijective application h ; the arithmetical 
mean belongs to the transformed space of yi and the h-mean 
returns in the yi space with the inverse transformation h-1, 
[3]. 
In acoustics we obtain the equivalent level with the 
applications h(L) = 10L/10 and h-1(x) = 10 log x, and Aczél 
notes that this special h-mean has the “translativity” 
property, [1]. That is to say that whenever levels are 
translated of the same quantity δ, the corresponding 
equivalent level 10 log {1/I ∑i 10(Li+δ)/10} = 10 log {1/I    
∑i 10Li/10} + δ also, as an usual arithmetical mean. 

2.2  About the variance 

The question is raised more severely when one looks for a 
dispersion statistic because there is the unfair mean levels 
1/I ∑i Li in the variance (as for every centered moment of 
order ≥ 2) ; then the variance and all the covariances do not 
formally agree with the logarithmic status of levels. 

2.3 The transform of variables in statistics, 
the equivalent variance 

A first way to reconcile both arithmetical and logarithmic 
logics may be attempted with the change of variables as is 
generally done in statistics. One considers an X variable 
and a transformed one Y = g(X) with a regular (continuous, 
derivable, …) transformation h. Then knowing the first X 
moments E(X) = mx and var(X) = σx

2 we may have an 
approximation for the same moments of the transformed 
variable E(Y) = my and var(Y) = σy

2 with the help of the 
technical expansions, [4] : 
E(Y) = my = g(mx) + σx

2/2 g"(mx) + …  , 
and  σy

2 = σx
2 g'2(mx) + …   . 

Concerning the logic of levels we take the notation Y = 
f(X), and f(x) = 10 log x. 
a) Every time X variable is additive, the statistics mx and 

σx
2 are meaningful and the other my and σy

2 are not. But 
we note that the first term of the E(Y) expansion is the        
f-1-mean for Y data, here one uses the arithmetical mean for 
the additive f-1(Y), and after that the f-1-mean may be 
considered as a central tendency statistic in the Y space, an 
equivalent mean meqy = f(mx).  

b) For the variance, by analogy, one takes the first member 
σx

2 f '2(mx) of the σy
2 expansion in the Y space. This 

“equivalent variance” σeqy
2 = σx

2 f '2(mx) comes from mx 

and σx
2 statistics ; and with the inverse function h = f-1 we 

note it is also the usual variance of the h(yi)/h'(meqy) data 
because here meqy = f(mx) and more generally h'[f(mx)]       
f '(mx) = 1. 
 
In acoustics Yi data are the levels Li and transformed 

variables xi = 10Li/10 are additive powers. One has f(x) = M 
ln x  with M = 10/ln10, f ’(x) = M/x and h(y) = 10y/10, and 
finally σx

2 = 1/n ∑ 10Li/5 - (1/n ∑ 10Li/10)2 = 1/n ∑ 10Li/5 - 
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10Leq/5 = 10Leq/5{1/n ∑ 10(Li-Leq)/5 - 1}, f '(mx) = M        

10-Leq/10. It results that the expression σeqL
2 = M2 {1/n      

∑ 10(Li-Leq)/5 - 1} is depending on levels, and as a variance 
it is invariant by any δ translation on levels, (see the Leq 
translativity, [1]). 

3 Another para-variance 
The equivalent variance is useful for regressions [8, 9], but 
not for other classical fields where variance is implied, for 
instance in the analysis of variance and the related designs 
of experiments. 

3.1 h-mean and h-dispersion 

We come back here to general data xi (not acoustics). 
Whenever the h function is monotonous and convex one 
obtains the classical inequality h-1{1/I ∑i h(xi)} ≥ 1/I ∑i xi, 
[3], then the difference h-1{1/I ∑i h(xi)} - 1/I ∑i xi between 
h-mean and arithmetical mean is positive (or zero). It is a 
first common property with the variance. 
One may also show that this difference is only depending 
on ∆xi = 1/I ∑j xj  - xi if and only if the h function is an 
exponential function ecx, [10]. This means that only in this 
special case the positive difference h-1{1/I ∑i h(xi)} - 1/I    
∑i xi has a second common property with the usual variance 
σ2 = 1/I ∑i ∆xi

2. For these two reasons this difference is 
called an “h-dispersion” noted h-disp(xi), with the detailed 
expression h-disp(xi) = 1/c ln (1/I ∑i e

c∆xi). Note that this 
name is sligthly ambiguous because the h-dispersion is 
defined only for the special h exponential functions ecx, but 
it is like that by semantic continuity with the more general 
h-mean. 

3.2  A property for mixed populations 

Lastly the h-dispersion has another very interesting 
common property with the variance, it concerns the mixing 
of statistical sub-populations, [10]. 
a) Classically, faced with a mixed population of data xpr, 
with a p index for the sub-populations p = 1…P, and an r 
index for repeat, r =1…np ≥ 2, one has first the means and 
variances for each p population, and second the additive 
decomposition of the total variance 
 total variance = mean of variances(p) + variance of 
means(p). 
The variances(p) are the respective internal variances of 
each sub-population and their mean is called the intra-
variance, while the variance of means(p) is called the inter-
variance and it is due to the true differences between all the 
sub-populations. Then the total variance has two very 
separate parts coming from different origins, the intra part 
and the inter part. 
b) one observes a quite similar property for the total h-
dispersion when one mixes several sub-populations, coming 
from the internal h-dispersions(p) and also the respective h-
means(p), [10] :  

total h-dispersion = mean of h-dispersions(p) + h-dispersion 
of h-means(p).  
Following this, globally, the first term of this additive 
decomposition of the total h-dispersion is a h-dispersion 
intra, with expression h-disp intra = mean of h-
dispersions(p) ; and the second term is a h-disp.inter, with 
expression h-disp.inter = h-dispersion of h-means(p). 

4 Another compromise between arith-
metical rules and logic of levels  
Until now all the considerations in § 3 are algebraic and 
statistical, but they find an immediate echo among acoustics 
because of the logarithm and because an equivalent level is 
an h-mean with the exponential function 10y/10 = ey/M. Of 
course we find Leq(Li) ≥ 1/I ∑i Li again, and we pose h-
disp(Li) = Leq(Li) - 1/I ∑i Li  as an acoustical h-dispersion 
for levels. For previous reasons it may be considered as 
another compromise between the arithmetic calculations 
and the logic of levels, with a non artificial introduction of 
the two respective means. 

4.1 A levels population's comparison with 
the acoustical h-dispersion  

Here we examine the simple case of two sub-populations of 
levels, P = 2, the first one with n1 levels  Li and a second 
one with n2 levels Gj. For instance it may be the case for 
the comparison between acoustical situations on the same 
site, before and after any noticeable change of traffic 
management, ….  
a) the definitions give us  
h-disp(pop1) = h-disp(Li) = Leq(Li) - 1/n1 ∑i Li  , 
and   h-disp(pop2) = h-disp(Gj) = Leq(Gj) - 1/n2 ∑j Gj  

b) then we obtain 
h-disp intra = n1/n+ {Leq(Li) - 1/n1 ∑i Li} + n2/n+ {Leq(Gj) 
- 1/n2 ∑j Gj} = 1/n+ {n1 Leq(Li) + n2 Leq(Gj)} - 1/n+ [∑i Li 
+ ∑j Gj]  , 

c)  h-disp inter = Leq{Leq(Li), Leq(Gj)} - 1/n+ [n1 Leq(Li) 
+ n2 Leq(Gj)]  , 

and finally the additive decomposition for the total h-
dispersion with the two parts h-disp inter + h-disp intra. 
Then we obtain the easy possibility to compare the two, and 
to note which is the most important one. 

4.2 An acoustical effect's characterization 

We may go beyond, and with the help of the h-disp.inter we 
may characterize the acoustical effect there is between both 
the {Li} and {Gi} sub-populations.  

If we suppose this effect is due to a collective translation 
which may be represented by the Leq difference δ = 
Leq(Gj) - Leq(Li), (positive, otherwise Leq(Li) - Leq(Gj) ), 
one obtains  
h-disp inter = Leq{Leq(Li), Leq(Li) + δ} - Leq(Li) - δ n2/n+  
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= 10 log[1/n+ (n1 10Leq(Li)/10 + n2 10Leq(Li)/10 10δ/10)] - 

Leq(Li) - δ n2/n+ = Leq(Li) + 10 log(1 + n2/n+  (10δ/10-1))  - 

Leq(Li) - δ n2/n+ = 10 log(1 + n2/n+  (10δ/10-1)) - δ n2/n+  

or finally M ln(1 + n2/n+ (eδ/M-1)) - δ n2/n+ . 

Then the inter h-dispersion between the two sub-
populations is a simple function of the δ Leq difference. It 
may be seen as a trite result, but it comes from the 
algebraical construction of a compromise of two logics 
(arithmetic and levels ones) which is not at all trite, and the 
resulting additive decomposition in two parts of the total h-
dispersion, an internal sub-population one - the h-disp.intra 
because each sub-population has its own dispersion, and the 
inter h-dispersion which is due to the true acoustical effect 
between sub-populations.  

Moreover fn1,n2(δ) = M ln(1 + n2/n+ (eδ/M-1)) - δ n2/n+  is 
defined for δ ≥ 0, the function is zero at the origin, growing 
and convex on R+ and alike to δ n1/n+ + M ln n2/n+  when δ 
tends towards + ∞. 

5 A random term and statistical impre-
cision  

The previous calulations do not account for the presence of 
the random terms which practically affect any measure. 
Here we try to introduce some of them in accordance with 
the logic of levels cares. 

5.1 A random term (approximate) 

a) let a signal si corresponding to the measured magnitude s 
and the random term εi , the classic model is si = s + εi with 
an additive formulation for the perturbation ; 
b) for the level Li = 10 log  si/s0 one has to consider the 
errored level L = 10 log  (s+εi)/s0 ; and here the general 
logarithm properties give ln (z + ε) = ln z + ln (1+ ε/z) # ln 
z + ε/z  for the rather weak perturbations such as ε/z is 
small in comparison with the unit.  
In the case of acoustics it yields 10 log (s+εi)/s0 = 10 log 

[s/s0 (1+ εi/s)] = 10 log s/s0 + M ln (1+εi/s)  # 10 log s/s0 + 
M εi/s.  

The following result is that when a signal is affected by an 
additive and rather weak perturbation in relative terms, its 
level 10 log s/s0 which is (of course) logarithmic and not 
additive is in spite of this affected by an additive errored 
dimensionless term εLi following the approximate relation 
M ε # s εLi , [6]. 

c) and here as one deals with levels and not signals 
themselves, this is the term εL one has to introduce and 
modelize, for instance centered with a variance σ2. 

 

5.2 Consequences on statistical calculations 

With several levels Li = 10 log (s+εi)/s0 i = 1…n, or 10 log  

s/s0 + εLi with related random and small independant terms 

εi and εLi, one has Leq(Li) = 10 log{1/n ∑ 10Li/10} = 10 
log(1/n ∑ s/s0 + 1/n ∑ εi/s0) = 10 log{s/s0 (1 + 1/ns ∑ εi)} = 
L + 10 log (1 + 1/ns ∑ εi) #  L + M/ns ∑ εi .  

Then there is a new additive errored term eLeq for L, and 
because all the relations M εi # s εLi this term is equal to εL. 

= 1/n ∑ εLi , here centered with variance σ2/n. 

5.3 Consequences on the h-dispersions 

a) about the h-dispersion inter,  
in presence of the both levels sub-populations Li = Lpop1 + 
εi and Gj = Lpop2 + εj , one has Leq(Li) = Lpop1 + εL.pop1 
with a random additive term of variance σ2/n1 , Gj = Lpop2 
+ εj and Leq(Gj) = Lpop2 + εL.pop2 of variance σ2/n2 , 
εL.pop1 and εL.pop2 independant. 

* with the δ, acoustical effect Lpop2 = Lpop1 + δ , the 
arithmetical mean 1/n+ {n1 Leq(Li) + n2 Leq(Gj)} becomes 
Lpop1 + δ n2/n+ + 1/n+ (n1 εL.pop1 + n2 εL.pop2) with the 
additive random term n1/n+ εL.pop1 + n2/n+ εL.pop2 . 
 

* for the h-mean of the two Leq we obtain Leq{Leq(Li), 

Leq(Gj)} = 10 log{1/n+ (n1 10Lpop1/10 10εL.pop1/10 + n2 

10Lpop2/10 10εL.pop2/10)}  
= 10 log{1/n+ (n1 10Lpop1/10 10εL.pop1/10 + n2 10Lpop1/10 

10δ/1010εL.pop2/10)}  
= Lpop1 + 10 log{1/n+ (n1 10εL.pop1/10 + n2 10δ/10 

10εL.pop2/10)} 
# Lpop1 + 10 log{1/n+ [n1 (1 + εL.pop1/M) + n2 10δ/10 (1 + 
εL.pop2/M)]} 

= Lpop1 + 10 log{1/n+ [n1 + n2 10δ/10 +  
n1 εL.pop1 + n2 10δ/10 εL.pop2

M
 ]} 

# Lpop1 + 10 log(1/n+ (n1 + n2 10δ/10))  + 
n1 εL.pop1 + n2 10δ/10 εL.pop2

n1 + n2 10δ/10
 . 

* by mere difference the h-dispersion inter has a constant 
component fn1,n2(δ) and a random component                 

n1 ( 1
n1 + n2 10δ/10

  - 1
n1 + n2

 ) εL.pop1 + n2 ( 10δ/10

n1 + n2 10δ/10
  - 

1
n1 + n2

 ) εL.pop2 of variance σ2 n1 n2
n+

  (10δ/10-1)2

(n1 + n2 10δ/10)2
 . This 

variance is positive, equal to 0 at the origin, growing on R+ 
and alike to σ2 n1/n+ n2 when δ tends towards + ∞.  

As a result the presence of random errored terms in noise 
levels provides a random behaviour for the h-dispersion 
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inter, with a known variance. In these conditions, knowing 

the standard deviation stdh(δ) = σ (n1 n2
n+

 )1/2 10δ/10-1
n1 + n2 10δ/10

 

we may deduce some confidence intervals for δ such as δ ± 
1,96 stdh(δ) for the level of confidence 0,95, or δ ± 1,65 
stdh(δ) for the level 0,90. 
b) unfortunately the same calculations provide an additive 
errored term zero when applied to the h-dispersion intra. In 
this case the approximations due to ln (z + ε) # ln z + ε/z 
are too crude and schematic, and cannot be convenient. 

6   Towards two-way designs 

The convenient common property related to an additive 
decomposition for the variance and the h-dispersion, § 3.2, 
cannot be extended to the designs with two different and 
independent factors, [2], because of the term of interaction 
between factors, [10]. However we have an interesting 
partial continuation. 
Let Lijr be the levels data with a first bimodal factor f1 of 
index i = 1, 2, a second bimodal factor f2 of index j= 1, 2, 
and the index r for the repetitions (new notations). In this 
two-way design we cannot obtain an additive decom-
position of the total h-dispersion of the Lijr, but of course 
we may consider two separate and resulting one-way 
designs. First the Lir’ data with levels sorted only by the i 
index of factor 1 and the repetition index r’ implying the 
factor 2 ; and second the Ljr” data with levels sorted only by 
the j index of factor 2 and the repetition index r” implying 
the factor 1. For each of them we have the previous results 
of § 4 and § 5 in order to make the evaluation of the 
respective acoustical effect δ1 and δ2, and consequently we 
may observe which factor has the most important effect, 
and compare their respective magnitude, (possibly with 
confidence intervals, § 5). 

7   Discussion and some conclusions 

In acoustics the research for a compromise between the 
arithmetical usual calculations and the logic of levels needs 
some technical keenness in order to bring closer their more 
or less incompatible calculating rules. It is necessary for 
each pole to move a little, because there is a theoretical as 
well as a practical need for means, dispersions and 
statistical processings. 
The h-dispersion in § 3 and § 4, and the random errored 
terms in § 5 are some possible convenient bridges. And 
more specifically the h-dispersion renders possible an 
additive decomposition in two parts for a tool similar to 
variance, as one usually does in a one-way analysis of 
variance. Later the random complements yield to associated 
confidence intervals for the evaluation of an acoustical 
effect between two sub populations of noise levels.  
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