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The paper deals with the modeling of woodwind musical instruments using a Boundary Integral Equation
(BIE) formulation. Specifically, the BIE is used to model the acoustic response of the instrument bore,
and is numerically solved by means of a Boundary Element Method (BEM). The latter takes advantage
of an analytical solution for the calculation of the BEM coefficients, thus allowing for the representation
of the problem as an open-domain problem. This peculiarity avoids the use of approximated boundary
conditions at the open end of the pipe. The formulation is used to: evaluate the input impedance
of the resonating air column; evaluate the time–domain “reflection coefficient”; identify the frequency
dependent transfer function relating the inflow of the instrument with the signal at observation points
in the field (the “Reed-To-Microphone” transfer function); extend the analysis to a realistic performing
environment to obtain the “Reed-To-Listener” transfer function. Standard techniques are used to take
into account the interaction of the bore with the nonlinear exciting device. Numerical results are obtained
for single-reed instruments in terms of tuning properties, convergence of solution, directivity patterns, and
simple synthesized sounds. Issues related to the possibility of real-time simulations are briefly addressed.
Specifically, the identification of digital filters from the calculated transfer functions is investigated, and
some preliminary numerical result included.

1 Introduction

A numerical tool capable to predict reliably the acous-
tic response of a wind musical instrument is highly de-
sirable, not only as a support to instruments design,
but also for sound synthesis purposes. Unfortunately,
most of the numerical methods available for the solu-
tion of acoustic problems fail to give reliable results in
this kind of applications. The main reason for this re-
sides in the difficulties arising in the modeling of the
boundary conditions associated to this class of problems.
Indeed, at the open of the pipe part of the energy asso-
ciated with the wave traveling inside the instrument is
radiated into the outer domain, whereas the remaining
part is reflected back in the instrument bore. This en-
ergy balance is governed by the geometry of the output
section of the instrument, and the appropriate condi-
tions to be applied to model it, are not easy to derive.
When approaching the problem using standard simula-
tion methods the wave evolution inside the instrument
bore and the sound propagation in the surrounding en-
vironment are typically considered as two distinct prob-
lems. The two domains are connected through a ficti-
tious boundary, on which approximated boundary con-
ditions are applied. The accuracy of such an approach
is poor when a realistic flare geometry is considered, due
to the intrinsic uncertainties in the definition of the fic-
titious boundary. Here, the problem is circumvented by
modeling the problem in a fashion as close as possible to
the real world. Indeed, the air column enclosed by the
instrument body is considered as a part of the complete
acoustic domain where the sound waves are allowed to
propagate (as it really is!). Using this approach there
is no need of dedicated boundary conditions at the out-
put section of the instrument, and the evolution of the
wave system in all the available space is modeled as a
whole. The method is applied to the prediction of the
tuning properties of clarinet and saxophones, as well as
to the evaluation of their directivity patterns. In ad-
dition, preliminary sound are synthesized by including
a simple interaction scheme with the reed/mouthpiece
system.

2 The Boundary Integral Equa-
tion

The propagation of a small–amplitude acoustic pertur-
bation within an inviscid, non-conducting, compressible
medium at rest, can be described by the velocity po-
tential ϕ(x, t), assumed that no vorticity sources are
present in the field. The equation governing the propa-
gation of the potential waves in the domain V, written
in the frequency domain, is the Helmholtz equation,

∇2ϕ̃ + k2 ϕ̃ = 0, ∀x ∈ V (1)

where the wave number k is the ratio between the an-
gular frequency ω and the speed of sound c, and the ˜
indicates the Fourier transform. The pressure pertur-
bation can be extracted from the potential through the
linearized Bernoulli’s theorem

p̃− p̃0 = −jω � ϕ̃, (2)

where � is the air density, and p̃0 is the reference pres-
sure. The above problem is completed by the boundary
conditions on ∂V, which will be discussed in detail in
Section 3. The boundary value problem so obtained
can be recast in an integral form using the standard
procedure (see, e.g., [5]), to yield

E(y)ϕ̃(y) =
∮
S

(
G

∂ϕ̃

∂n
− ϕ̃

∂G

∂n

)
dS(x). (3)

Here, G(x,y, k) = −e−jkr/4 π r is the free–space Green’s
function for the three–dimensional wave operator, r =
|x − y| is the distance between the source point x ∈ S
and the observation point y ∈ V (with V = V∪∂V). The
domain function E(y) = 1 if y ∈ V and E(y) = 1/2 if
y ∈ ∂V. This equation is formally identical to the classic
Kirchhoff–Helmholtz integral theorem, written in terms
of the velocity potential function ϕ̃. Note that, if ϕ̃ and
∂ϕ̃/∂n are known on the boundary of V, then Eq. 3 may
be used as a direct representation of ϕ̃ at an arbitrary
location y ∈ V. On the other hand, when the Cauchy
data set associated to the problem are not completely
known (see Section 3) the problem can be solved by lo-
cating the observation point y on S. In this case, Eq.
3 assumes the role of a compatibility condition between
the velocity potential function and its normal deriva-
tive, and can be numerically solved using the boundary
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element method, as explained in Section 4. In order to
use this integral formulation to simulate the acoustic re-
sponse of a wind instrument, it is necessary to clearly
define the domain V, its boundary S = ∂V, and the
boundary conditions on it.

3 The boundary conditions

The physical phenomenon under analysis deals essen-
tially with the evolution of the wave system induced
inside the instrument bore by the interaction of the ex-
citing device (the reed/mouthpiece system, in our case)
with the air column. At the open end, the forward–
traveling wave partially radiates outside, and the re-
flected wave travels back into the duct with a reduced
energy content. When the backward wave reaches the
mouthpiece, the amount of energy radiated in the sur-
rounding environment is restored by the exciting device,
which is fed by the pressure reservoir represented by the
players breathing system. A correct reproduction of this
mechanism requires an accurate modeling of the radia-
tion properties at the open end (see e.g., [2]). This is
not an easy task, especially for the complex geometries
typical of the musical instruments. In this work, the res-

Sin

Sp

V

Sinf

Figure 1: Domain boundary

onating air column is considered as a part of the whole
acoustic domain, reproducing as close as possible the
real world conditions. The resulting domain where Eq.
1 is to be solved is presented in Figure 1. The domain
V is the union of the interior of the pipe, Vint and the
external open space Vout. The body of the instrument
has a (non–physical) thickness, so as to ensure the ap-
plicability of the integral formulation presented. The
domain boundary is given by ∂V = Sin∪Sp∪S∞, where
Sin represent a fictitious surface introduced at the input
section of the pipe (the need for this surface will be clar-
ified later), whereas Sp is the surface of the instrument
pipe, and S∞ is the boundary at infinite distance. The
boundary conditions of the problem in their more gen-
eral form, derive from the relationship that holds on ∂V
between the velocity potential and the normal acoustic
velocity

α(x, k) ϕ̃(x, k) + β(x, k)
∂ϕ̃

∂n
(x, k) = f(x, k), (4)

where α, β and f are, in general, complex functions
of position and frequency, and ∂ϕ̃/∂n = ∇ϕ̃ · n. In
our case, the specific conditions to be applied on each
partition of the boundary are:

• the acoustic impermeability of instrument walls,
Sp (α = f = 0, β = 1)

∂ϕ̃

∂n
= 0 x ∈ Sp; (5)

• the prescribed input velocity vin(x) on the input
section Sin (α = 0, β = 1, f = vin · n)

∂ϕ̃

∂n
= vin(x) · n x ∈ Sin. (6)

In addition, the Sommerfeld radiation condition implies
ϕ̃ = O(r−1) for x→ S∞. Hence, in Eq. 3, S = Sin ∪Sp.

4 The BEM

To numerically solve the problem, the Boundary Ele-
ment Method (BEM) is used. The boundary of the
domain is partitioned into N quadrilateral panels. All
the quantities are considered to be constant within each
panel (zeroth–order approximation). The surface inte-
gral in Eq. 3 is approximated with a sum of N panel
integrals, and the collocation method is used, by locat-
ing the collocation points at the centers of the panels.
The discrete approximation of Eq. 3 is

1
2

ϕ̃(xn, k) =
N∑

m=1

[
Bnm

∂ϕ̃

∂n
(xm, k) + Cnm ϕ̃(xm, k)

]
(7)

for n = 1, . . . , N , and

Bnm =
∫
Sm

G(xm,xn, k) dS, (8)

Cnm =
∫
Sm

∂G(xm,xn, k)
∂n

dS. (9)

Taking advantage of the zeroth–oder formulation, the
coefficients 8 can be evaluated analytically (see [6]). Col-
lecting the integral coefficients in Eq. 8 into the [N ×N ]
complex matrices B and C, and the value of the veloc-
ity potential and its normal derivative respectively into
the [N × 1] column vectors ϕ̃ and χ̃, the solution of the
system in matrix form is

ϕ̃ = Y−1 B χ̃, with Y =
(

1
2

I− C

)
, (10)

being χ̃ known from the boundary conditions.

5 Modeling the instrument

The formulation outlined so far is used to model the
acoustic response of the instrument. In the following,
the approach used is briefly described in specific subsec-
tions, each dedicated to one of the aspects taken into
account.

5.1 The input impedance

The input impedance Zin of the bore is a crucial pa-
rameter to characterize the acoustic properties of the
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instrument. Zin is defined as the ratio between the pres-
sure jump existing across the input section Sin, and the
resulting acoustic flow,

Zin(k) =
p̃− p̃0

vin · n . (11)

The input impedance varies greatly with frequency and
its maxima and minima correspond to the frequencies at
which a steady wave system can be established within
the bore through the interaction with the exciting de-
vice. In other words, Zin(k) identifies the basic tuning
of the instrument. Here, the input impedance is con-
sidered as the transfer function between the inflow and
the pressure perturbation. It is evaluated by imposing
a harmonic input velocity at Sin with frequency span-
ning the whole range of interest with a given step Δω.
The solution is then calculated with Eq. 10, and Zin is
obtained through

Zin(ωi) =
−1
Sin

∫
Sin

p̃− p̃0

vin · n dS � −1
Sin

Nin∑
m=1

jωi ρ
ϕ̃m

χ̃m

sm (12)

where Nin is the number of panels on Sin, and sm repre-
sents the area of the m−th panel.

5.2 The reflection coefficient

The interaction of the exciting device (the reed in wood-
winds, the jet for flutes, or the player’s lips for brasses)
with the resonating air column should be typically per-
formed in the time domain, due to intrinsic nonlinearity
of the pressure-flow relationships (see [4]). The resulting
convolution converges extremely slowly, due to the rich-
ness of the Zin spectrum. To circumvent this problem,
we introduce the reflection function R(k) as the trans-
fer function between the incoming and reflected waves
at the open end of the pipe, p̃−(k) = R(k)p̃+(k) with
p̃in = p̃+(k) + p̃−(k). The reflection coefficient is the
inverse Fourier transform of R, and can be evaluated as

r(t) = F−1

[Zin(k)−Z0

Zin(k) + Z0

]
, with Z0 =

� c

Sin
(13)

The pressure jump inside the mouthpiece can be ob-
tained through the (rapidly converging) convolution

p(t) = r(t) ∗ [p(t) + Z0vin(t) · n] + Z0vin(t) · n.

5.3 Reed–To–Microphones (R2M) Trans-
fer Function

The formulation presented may be used to derive a ma-
trix transfer function relating the inflow vin · n to the
pressure evaluated at arbitrary locations in the field.
Indeed, indicating with ϕ̃M the column matrix collect-
ing the value of the velocity potential at M observation
points in the field (the microphones), the pressure at
the same locations is given by p̃M = −jω � ϕ̃M. Apply-
ing the BEM approach described above to obtain the
value of ϕ̃M yields

ϕ̃M = BM χ̃ + CM ϕ̃ (14)

where the entries of the (M×N) matrices BM and CM are
the integral coefficients describing the influence of the N

panels at the M external microphones. Substituting Eq.
10 into Eq. 14, and recalling the linearized Bernoulli’s
equation, the relationship between χ̃ and p̃M is

p̃M = −j ω �
(
BM + CM Y−1B

)
χ̃ = R2M(k) χ̃ (15)

where the (M ×N) frequency–dependent matrix R2M is
the desired reed–to–microphones transfer function. The
described approach is applied to evaluate the directivity
pattern of the instrument, by locating the microphones
along a circle centered on the instrument output section.

6 Numerical results

The method presented has been applied and validated
in a number of preliminary test cases, involving sim-
ple straight geometries (soprano saxophones and clar-
inets). The effect of tuning holes has not been taken into
account. First, the evaluation of the input impedance
has been validated against the well-assessed method of
Levine and Schwinger [1], for a cylindrical pipe 1 meter
long, with an internal radius of 1 cm. The dimensionless
ratio Zin(k)/Z0 is presented in Fig. 2. The agreement
between the present method and the reference is excel-
lent along the whole frequency range considered. The
convergence analysis of the position of the first peak
shows a remarkable agreement of the asymptotic solu-
tion with the reference. The method is then applied
to the real geometries of a clarinet and a soprano saxo-
phone (see, for details, [3]). In both cases, the frequency
where the Zin spectrum presents the first peak corre-
sponds exactly to the frequency of the lowest playable
tone (D3 for the clarinet and A�

3 for the sax, Figures 4,
5). Note that the cylindrical profile of the clarinet bore
produces a Zin spectrum including only the odd har-
monics of the fundamental, whereas the conical section
of the sax generates a complete harmonic series.

In order to validate the method for a more compli-
cated geometry, the frequency shift of the fundamental
in presence of a curved bore has been predicted for the
elbow of a tenor saxophone. The resulting spectrum is
presented in Figure 6, and compared to the one obtained
for an equally long straight tube, as well as with the pre-
diction of a standard semi-empirical correction formula.
The prediction of the present method is in good agree-
ment with the latter, revealing that the formulation is
capable to capture the effects of more complicated in-
strument profiles.

The directivity pattern of a soprano saxophone is
presented in Figure 7. Even if a reference solution for
the validation of the result is not available, the polar
plot appears to be consistent with the expected intensity
distribution for the three frequencies analyzed.

The following results deal with the synthesis of the
sound produced by simulating the interaction of the res-
onating air column with the reed/mouthpiece for the
same instruments of the previous tests. The model used
for the reed is that of a simple pressure–driven valve
(see [4] and [3]), and is coupled to the instrument bore
through the convolution of the reflection coefficient (see
Figure 8) with the pressure signal inside the mouthpiece.
The inflow and the pressure signals at the input section
of the clarinet are depicted in Figures 9 and 10. The
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time–marching procedure reaches a steady state corre-
sponding to the correct frequency (the one of the lowest
playable tone), and the “almost square” pressure profile
fits well with the oscillation pattern observed inside a
clarinet mouthpiece (see [4]).

Finally, a preliminary attempt to obtain a binaural
sound signal at the location of a virtual listener is pre-
sented in Figure 11. The approach presented in Section
5.3 has been extended to take into account the presence
of the listener body, and its effect on the sound prop-
agation (the derivation of the resulting matrix transfer
function is not included here for the sake of conciseness).
The time signal at the location corresponding to the lis-
tener ears appear to be correctly shifted in amplitude
and phase. The audio effect can be considered as good,
considering the rough approximations of the model.
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Figure 2: Dimensionless input impedance for a
cylindrical tube (L = 1m., r = 1 cm.). Comparison

with the Levine & Schwinger theory.
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Figure 3: Convergence of the first impedance peak
w.r.t. the number of boundary elements.

Figure 4: Dimensionless input impedance for a clarinet.

Figure 5: Dimensionless input impedance for a soprano
saxophone.
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Figure 6: Effect of the curvature for the elbow of a
tenor saxophone.

Figure 7: Directivity pattern of a soprano saxophone.
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Figure 8: Reflection coefficient calculated from the Zin

in Fig. 4.

Figure 9: Clarinet inflow in playing condition. Lowest
tone.

Figure 10: Pressure at the clarinet input section in
playing condition. Lowest tone.

Figure 11: Clarinet sound perceived at the listener
location.
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