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In the vibration transmission process, the part due to the moment excitation is often neglected, because of the
difficulty to measure it, even if it is sometimes an important term. Indeed, several studies show that the influence
of the moment in structure borne power transmission can be higher than simple force. Moment measurement or
identification is an old problem especially at boundaries. It has been mainly investigated in mobility methods. In
fact, bending moment expression can be seen as spatial derivatives of displacements. These derivatives can be
approximated from measured displacements but two major difficulties appear: derivatives are highly sensitive to
measurement errors and the usual methods used to obtain them (finite differences, modal approach, etc.) are not
well adapted at boundary points. In this paper, two different moment identification methods are investigated
where the considered structure is a beam. The first approach was already developed by authors; the second
method is based on the use of particular shapes of piezoelectric patches. These methods are numerically

implemented allowing us to compare and discuss on results.

1 Introduction

The identification of sources exciting structures from
indirect measurement is of great practical interest, and
several papers have addressed this problem. When forces
inject or dissipate energy, structural intensity techniques
(see for example [1, 2]) give a quantification of the power
flow inside the structure due to flexural wave motions.
Alternative techniques, like RIFF [3, 4], propose to
compute the exciting force distribution using the motion
equation of the structure. In all cases, the searched
quantities depend on the spatial derivatives of the
displacements. Moreover, obtaining these terms implies
two major problems: they present a high sensitivity to the
uncertainties of measurement and it is difficult to obtain
them at structure boundaries. These boundaries being often
the transmission ways of vibrations, measurement at these
points is a major issue in source identification. Moreover,
moment excitations or moment measurements present
intrinsic practical difficulties, and are often disregarded.
Various studies show its importance [5, 6] and other shows
the difficulties to characterize such quantity [7]. Also,
bending moments are quantities proportional to spatial
derivatives of displacements and classical characterization
methods using finite difference schemes are not suitable at
boundaries.

In a prior article [8], boundary shear forces and bending
moments of a beam were determined using a weak form of
the motion equation. The principle consists in multiplying
the equation of motion by a test function and integrating it
through several integrations by part, so that the shear force
and/or the bending moment can be extracted at one
boundary of the integration domain by a spatial weighted
average. Finally, the method remains to the integration of
the displacement multiplied by an analytical function. Until
now, this last integration is implemented by a discretization
where displacements are measured with classical sensors
like accelerometers, laser vibrometers...

Nevertheless, in such methods, the discretization introduces
an approximation depending on the numerical method used
to compute the integration. In this present work, a
continuous approach is proposed using distributed sensors
made by piezoelectric films or patches avoiding the discrete
integral calculation. Indeed, the output of a piezoelectric
sensor is a weighted average of the surface strains in the
region covered by the electrodes on the patches. In the
literature, spatially distributed piezoelectric are often used
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has sensor sensitive to a mode or a group of natural mode
[9, 10], tailoring the patch (or electrode) shape.

In this paper, this new technique is proposed for bending
moment measurement at boundaries of a beam submitted to
flexural motion. Theory and numerical simulations of
bending moment measurement using discrete [8] and
continuous approaches are presented and compared. Both
are based on the weak form of the equation of motion and
use particular test functions. On one side, the test function
constitutes weights in the discrete measured displacement.
On the other side, the test function is used to design the
piezoelectric patch shapes.

2 Basic equations of the system

In the following, the transverse vibrations of a beam is
considered with the standard Euler-Bernoulli theory and
the displacements w(x,f) are described in an harmonic
motion:

w(x, 1) = w(x)e™

M

where w the angular frequency. For the sake of simplicity,
the time dependence ¢ is omitted. The aim of this paper is
to identify the boundary bending moment M from various
measurements on a beam. When the beam is driven by an
harmonic excitation, the analytic expression of M is [11]:

2

0w
M(x) = EI =2 (x)
ox’

2

where E is the complex Young modulus and 7 the flexural
inertia of the beam.

Also, with Euler-Bernoulli assumptions, the dynamic
motion equation can be written as:

4

d'w s
EI—=5 () = pS@'w(x) = F(x) 3)
x

where p is the mass density, S the section of the beam and
F(x) the exciting force distribution.

3 Basic equations of a piezoelectric
sensor

In this section the same notations as in the IEEE standard
on piezoelectricity is used. For a piezoelectric material, the



electrical and mechanical constitutive equations are coupled
and can be written:

T=c"S—dc"E 4)

D=dc"'S+¢€°E (5)

where T is the stress vector, S is the strain vector, £ the
electric field vector and D the dielectric displacement
vector. These physical quantities are linked by ¢ the
Young’s modulus (elasticity matrix) under a constant
electric field, ¢° the permittivity matrix under a constant
strain, and d a piezoelectric constant matrix relating the
strain to the electric field in the absence of mechanical
stress.

Let us consider a laminar sensor with a short-circuited
electrodes, so that a zero electric field is enforced (£=0).
Equation (5) becomes:

D=dc"S (6)

In this study, only the transverse vibrations of the beam are
taken into account. Consequently, the constant d is reduced
to its d3; component representing an extension in the beam
principal direction.

Figure 1 presents the piezoelectric patch characteristics
used in this study where b and 24 are the beam width and
thickness, b,(x) and A, are the patch width and thickness.
The electrode covers the whole patch surface.

Piczoclectric patch

Fig. 1: Piezoelectric laminar sensor, stuck on a beam
structure.

Assuming that a constant strain over the thickness of the
patch (i.e. 4, << ), the Eq.(6) becomes:

,od'w
D(x,t) =—=d, ¢’ h—(x,1) (7
dx
The corresponding electric charge is equal to the integral of
the electric displacement over the patch area and can be
written:

0() = [ D(x.1)b, (x)dx (8)
0

If the polarization profile is uniform, d3; is constant and can

be outside the integral:

B a dZW
O@t)=-d,c h_[—(x,t)b (x)dx )
dxl p
0
When a charge amplifier is used (see figure 2), the output
voltage is proportional to the electric charge in the electrode
depending on the integral of the curvature weighted by

by(x).
o) d.c'h f d’w
C C dx’

a a 0

v(t) =— (x,0)b (x)dx

(10)
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Electrode

Piczoclectnic pa.lchl D

Beam

Fig. 2: Piezoelectric patches connected to charge amplifier

4 Bending moment identification

4.1 Using displacement measurements

In [8], authors have shown that using the weak form of
Eq.(3) and a particular test function 7,,(x), it is possible to
compute the bending moment at one boundary (for example
x=0) using only displacement measurements. Without
excitation in the integration domain /0,a/ , the boundary
bending moment at x=0 can be obtained by:

',

M(0) = jw(x)[pSa)n (x)—El—— o (¥)]dx (11

. x4 X5 x(’ x7
with 5 (x)=x-20—+45—-36—+10—
: a a a a’

(12)

In practice, the integral in Eq.(11) is discretized, so that
w(x) is measured in a finite number of points. This
constitutes the only approximation error.

4.2 Using piezoelectric patches

Here, the approach uses also the weak form of the equation
of motion, but the test function is substituted by a analytic

2

d
function derived two times a—y: (x):
X

a 2

al/f

ldx =0 (13)

0

Eq.(13) can be transformed using integrations by parts,
leading to the following result:

Iw oy
El—(a)—(a) -
ox’ ( )ax2 (

3

Iy , oy ) Iy
+M(0)§(0) -pSo w(a)a—x(a) +pSo w(O)g(O) (14)

, Ow L ow
#9560 (@ (@) pS’ T O (0)
ox ox

4

"f (x)]dx

In Eq.(14) boundary bending moments M(0) appears in the
fourth term. Then, M(0) can be isolated when a judicious
choice of a the particular function y(x) is made to force
other terms to zero. This can be done if w(x) satisfies the
following conditions:



Acoustics 08 Paris

v (0) = W (a)=0
a_y/(o)_o a_y/(a)zo

ox ox (15)
9’ 9’
Loy=0 “FEw=o

X d°x
V=1 =0

X X

Indeed, when these conditions are satisfied, Eq.(14)
becomes:

2 4
M(0)= j“i—ﬁ”(x)[psdwu) - EI?)—"{(x)]dx (16)
o Jx X

To satisfy conditions (15) a polynomial function is chosen.
The lowest order solution is:

1 2x' X 2« 1 x
pn=—x -2 L 21X )

2 3 4

6 3 a a 3a 6 a

o 16 ¥ ¥
Y =——+120=-240—+140=  (18)

2 3 4

ox a a a a

With these polynomial functions (represented in figure 3
and 4), expression (16) shows that the boundary bending

moment at (x=0) can be computed with a spatial integration
2

of the curvature _v2v( x) weighted by an analytically
ox

. ) 841//
known function (W(x) = pSwy(x)— El Y (x))-

10,0014 —

1 // N
0,0010 | /// \\
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Fig. 3 : Test function w(x)

Fig. 4: Fourth derivative of y/(x)

Now, by a comparison of equations (10) and (16), one can
note that if the width b,(x) of the piezoelectric patch
verifies the follow expression:

4

Jy
ax*

b,(x)="¥(x) = pS&’y(x) - EI (x) (19

the output voltage becomes proportional to the bending
moment at x=0:

v(t) = KM (0) (20)

cEh

31

where K is a constant defined as K =
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Nevertheless, for practical reason, and in order to be
frequency independent, two different patches will be used.
The shapes of the piezoelectric patches are defined by the
test functions w(x) (patch A) and its fourth spatial derivative
(patch B) (figure 3 and 4). Note that for the patch B, the
sign of the width b,(x) is negative at given coordinates
along the patch. This can be done by inversing the polarity
of the strip. As an alternative, the part of the sensor with
negative polarity can also be stuck on the opposite side of
the beam.

Now, from Eq.(10), the bending moment M(0) is quantified
using two integrals corresponding to each patch:

(e 0w Ow 'y
MO =pSe3 ||~ (o1 ||~ (=T (e @1)
V' \—W_—/

The patch A is associated with the kinetic energy and is
called “Mass Patch”. The patch B is associated with strain
energy and is called “stiffness Patch”.

5 Numerical simulations

5.1 Step 1: Numerical setup - obtaining
displacements and curvatuves of a beam

In this section, a clamped-free beam of length L excited by
a harmonic force located at the point X;=0.8L is studied. To
identify the bending moment at boundary point (x=0) with
both approaches, the displacements and the curvatures are
analytically computed.

The displacements are computed from a wave
decomposition at each side of the excitation point:
w(x) =4 cos(fee) + B sin(k)+CGe “ +De” for xe[0.X ]
(22)

w(x)=A4 oos(ko)+B sin(kr)+Ce“ +De" for xe[X 1]

Where w;(x) (resp. w»(x)) is the solution at the left hand
side (resp. right hand side) of the excitation point, 4, B,
C1, Dy, Ay, By, Cy, and D, are the wave amplitudes and £ is
the natural wavenumber, satisfying the dispersion equation:

_pS
=—w
EI

The wave amplitudes are then computed in order to satisfy
the 4 boundary conditions at x=0 and x=L and the 4
continuity conditions at the excitation point x=X;. Finally,
the curvatures can be easily computed analytically as
second spatial derivatives of displacements at each side of
the excitation point.

Kt (23)

5.2 Step 2: bending moment identification
using displacement on a meshgrid

Because the displacements cannot be measured
continuously along the beam, integral (11) is discretized.
Here, the well known trapezoid integration method is
chosen.

As expected using experimental data; the measured
displacements are not exact. The goal of this simulation is



to see the influence of small perturbations on the
identification. The bending moment reconstruction is made
here from noisy displacements w"” obtained by:

w7 (x)=w" (x).Aw, e (24)

where Aw,, is a Gaussian random real number with a mean
value equal to unity and standard deviation equal to 1% of
displacement magnitude. A is an another Gaussian random
real number with a zero mean value, and a standard
deviation 1 deg.

The bending moment reconstruction error level g, is now
given by Eq. 25:

M(0
e = 10In ©

o E]@(O)
ox’

(25)

where M(0) is the reconstructed bending moment. Then, the
plot of &), obtained from exact displacements allows to see
only the discretization errors whereas that obtained from
noisy displacements shows all errors: discretization and
effects of noise in data.

As shown in [8], the key parameter is the number of
wavelengths contained in the integration domain. Indeed,
the result remains unchanged whatever the driving
frequency. Figure 5 presents the plots of g, using exact and
disturbed displacements. In these calculations 20
integration points were used.

o

~ Error level (dB) : ¢

[ z ] 5 5 5
Number of wavelength in the integration domain

Fig. 5 : Error level between the simulation and the analytic
bending moment using 20 points using exact displacements:
solid line, using noisy displacements: crosses.

This method presents a huge error when the integration
domain has less than one wavelength, due to the very high
values of the test function fourth derivative when
integration domain is very small. This error is drastically
reduced when one wavelength is considered and increases
softly when a higher number of wavelengths is included in
the integration domain. It is due to the fact that when the
number of wavelength included in the integration domain
increase, the number of points per wavelength is reduced.
Also, it is important to note that noise in data becomes non
negligible in this last region, i.e. when the integration
length is upper than 3 wavelengths.

5.3 Step 3: bending moment identification
using designed piezoelectric patches

Here, the principle consists in using Eq.(21) where integrals
have not to be discretized, because curvatures are directly
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integrated and weighted by the patches with their designed
shapes. Consequently, integrals are numerically computed
with a huge number of integration points in order to avoid
errors due to the discretization. Figure 6 presents results
obtained from exact curvatures. In figure 6.a, the error is
always zero, because no assumptions are made at this step

of the simulation. In figure 6.b, one can see the
contributions of each patch computed from:
2 [ azw
pSo’ [" == () (x)dx
_ 0 ax
gPa/zhA - 0
analym( ) (26)
. az 84
EI " (x) Yo (x)dx
* ox” dx
6[’11/(‘/18 =
M. (0)
8 2]
oARTE
)
3
S.
W

% i 2 3 B 5 B
Number of wavelength in integration domain

Fig. 6a: Error level between the simulation and the analytic
bending moment.

ENEVAN
(VA

Contribution

% 1 2 3 4 5 6 7
Number of wavelength in integration domain
Fig. 6b: Contributions of each patch in bending moment
identification (Patch A: thick line Patch B: thin line)

These contributions show how the information is
distributed with respect to the wavelength in integration
domain. When patch lengths are small (less than 1
wavelength), all the useful signal is delivered by the
stiffness patch. Indeed, the stiffness patch is associated with
the strain energy, which is the most important energy in the
low frequency domain (where the natural wavelength is
high). On the contrary, when patch lengths are bigger, the
mass patch contribution becomes important, but the transfer
is slow, with oscillations. In practice, small uncertainties
can be introduced in the measurement technique principally
due to the shape errors during the patch and electrode
manufacturing or by bad bonding on the beam. To take into
account these errors, arbitrary functions are introduced in
Eq. (21):

2

M(0) = pSa’ j:

29

Jow
o (D (x)¢, (x)dx

Patch A
4
Jy

4
ox

Patch B

(27
o’w

ox’

~ Bl [ — ()= ()9, (x)dx
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Functions @;(x) and @,(x) are spline interpolation functions
using 20 points in the integration domain. Values are
obtained from a Gaussian random real number with a mean
value equal to zero and standard deviation equal to 1/100.
Figure 7 illustrates one of these error functions.

Random points

a

" N

Exror function &(x)

Fig. 7: Example of a part of an error function

Figures 8.a and 8.b present the error levels g, (defined in
Eq.25) using disturbed integration and the contributions of
each patCh €Patch_A > €Patch_B- (deﬁned in Eq26)

Error level (dB)

i 3 g f + g
Number of wavelength in integration domain

Fig. 8a: Error level between the simulation and the analytic
bending moment using exact data: solid line, using noisy
data: crosses.

Contribution

Number of wavelength in integration domain

Fig. 8b: Contributions of each patch in bending moment
identification (Patch A: thick line, Patch B: thin line)

When the integration domain is less than 3 wavelengths
(Fig 8.a), the measurement method is very accurate
uncertainties does not produce too important errors.
Moreover, contrary to the previous approach a small
integration domain gives very good identifications (see Fig
5 for comparison). Nevertheless, after this limit, huge errors
appear. In Fig 8.b it is clear that the errors due to noise in
data are particularly provided by the “mass patch”. This
phenomenon comes from the fact that the Mass Patch signal
is a second temporal derivative. This is the reason why the
errors are bigger when the integration length is large, i.e.
when the wavelength is small in comparison with patch
length. As an example, for a patch of length 10cm stuck on
a steel beam with a section: 20*3mm’, the frequency
corresponding to a wavelength equal to 1/3 patch length is
around 25000Hz. Finally, for this kind of structure and for
low audible frequencies, a stiffness patch appears sufficient
and the signal delivered should not be sensitive to internal
defaults of the sensor.
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6 Conclusion

Two boundary bending moment identification methods
have been investigated by means of computer simulations
in case of a clamped free beam. Both approaches are based
on the weak form of the motion equation using particular
test functions. The difference between both identifications
is in there implementation. The first uses discrete measured
displacements; so that approximations appear in the integral
calculation particularly when the integration domain is very
small or very large with respect to the wavelength. In the
second implementation, the use of 2 piezoelectric patches
with specific shapes issued from a test function allows to
identify bending moments without discretization.
Comparisons between numerical and noisy simulations
between both approaches show that the use of patches
presents a better regularizing aspect especially when the
patch lengths are small.

References

[1] G. Pavic, “Measurement of structural borne wave
intensity, partl: Formulation of the methods” , J. Sound
and Vibr.49, 221-230, (1976)

[2] Noiseux, D. U., “Measurement of Power Flow in
Uniform Beams and Plates,” J. Acoust. Soc. Am., 47,

pp. 238-247 (1970).

Pezerat, C., and Guyader, J.-L., “Two Inverse Methods
for Localisation of External Source Exciting a Beam,”
Acta Acoust, 1(3), pp. 1-10. (1995)

Pézerat C. and Guyader J-L “Force Analysis
Technique: Reconstruction of Force Distribution on
Plates™ Acta Acoustica, 86, 322-332, (2000).

(3]

(4]

[5] G. Pavic, Q. Leclére 2007 “Moment excitation: an old
problem revisited” Proceeding in INTER-NOISE 2007

Istanbul, Turkey 28-31 August. (2007).

Fulford R. A., Petersson, B. A. T., “The role of
moments on the vibration transmission in built-up
structure”, J. Sound and Vibr.227 (3), 479-510 (1999).

Elliott, A., Moorhouse, A., Pavic, G., “Characterisation
of a structure-borne sound source using independent

and in-situ measurement” proceeding in ICA Madrid
Spain, 2-7 sept. (2007)

Chesné S., Pézerat C. and Guyader J-L “Identification
of boundary forces in beams from measured
displacements” ASME J. Vibr. And Acoustic, 128(6),
757-771, (2006).

(6]

(7]

(8]

[9] Tzou H. S., and Hollkamp J. J.;, “Collocated
independent modal control with self-sensing
orthogonal  piezoelectric  actuator (theory and

experiment)” Smart Mater. Struct., 3, 277-284 (1994).

[10]Preumont A., Frangois A., De Man P., Piefort V.,
“Spatial filters in structural control”, J. Sound and
Vibr.265, 61-79. (2003)

[11]Guyader J-L “Vibration in continuous media”, ISTE,
448p, (2006).



