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Acoustical indices related to isolated acoustical noise events are calculated on variable finite durations Tev, as 
opposed to instantaneous levels or index on constant periods T, (1h, 24h, …). They are the TEL (transit exposure 
level) or Leqtev on every tev, and there are formulas to pass from many TELi to LeqT on a rather long T 
including n events. In Algebra one may develop some relations and conditions between total duration T, the total 
contribution of tev,i and their number n. Then one obtains the result that “events kill events”, say that too many 
events render not emerging any new one. This is also the case with Statistics and other methods. Coming on with 
probabilistic tools, the Beta distribution renders possible some characterization of the time evolution of emerging 
noise events.  

1 Introduction 

Of course the notion of “time duration” is included into the 
definitions of acoustic indices, and one has to make a 
distinction between several sorts of “time”. The time 
devoted to isolated acoustic events is one of them, and 
about these indices there are some interesting algebraic and/ 
or statistical processings which yield specific results for 
isolated events. 

2 The principal “times” in environ-                
mental acoustics 

2.1 The different times 

First there are the indices corresponding to a null duration, 
this is the time for instantaneous levels (or supposed 
instantaneous, [7]), and besides this there are the indices 
corresponding to a finite positive time interval ∆t. In this 
second category we have fixed conventional and standard 
durations for different reasons (regulations and/or habits 
and conveniency such as second, minut, hour, 24 h, from 6 
to 22h, …), and the case of variable durations related to 
isolated events over the ground noise level, [8, 9]. Last we 
may add very special (and scarce) cases such as the very 
very long standard option  “over a 40 year period”, [10]. 

2.2 Relations between the different times 

- The simplest transfer relation is the general passage 
between instantaneous levels and the very classical time 
integrated levels, LeqT = 10 log{1/T ∫T 10Lt/10 dt}, 
corresponding to the definition of the equivalent level Leq ; 
- reciprocally the Lmax on any given positive duration is a 
way to pass from a ∆t index to an instantaneous one ; 
- and concerning a relation between instantaneity and the 
time for events, the transit exposure level index, TEL, [2], 
is the Leq formula’s adaptation to any variable ∆t.  

2.3 From the time for events to a longer 
standard duration 

Usually an event duration is rather short and the 
conventional ones are longer. So the last interesting relation 
is how to pass from the indexes related to some factual 
events to an integrated Leq corresponding to a ∆t including 

the different isolated events. In a general way, as a part of 
the logic of time integration, one has the simple relation 

Leq1+2 = 10 log{1/(T1+T2) ∫T1+2 10Lt/10 dt} 

= 10 log{1/(T1+T2) (∫T1 10Lt/10 dt + ∫T2 10Lt/10 dt)} 

 = 10 log{1/(T1+T2) (T1 10LeqT1/10 + T2 10LeqT2/10)} 

which is also  (T1 + T2) 10Leq1+2/10 = T1 10LeqT1/10 + T2 
10LeqT2/10, for respective Leq on two separate time 
intervals and the resulting global Leq. 
The relation may be extended to several separate durations 
Tk. Then, whenever we have different time durations ∆ti 
related to respective events TELi and a ground level Lf on 
the remaining time Tf = T - Tev with Tev = ∑i ∆ti , (Lf for 
the French “bruit de fond”), we get the relation 
LeqT = 10 log{1/T (Tf 10Lf/10 + ∑i ∆ti 10TELi/10)}. 

3 The isolated events number 
intervention 

3.1 An associated calculation about the 
acoustical dominance 

Let Lx,y = 10 log (x+y) = 10 log x + 10 log (1+y/x), in these 
conditions the part of y in the final global level is 
negligeable as soon as the second term 10 log (1+y/x) is for 
instance lower than 1 decibel ; and this occurs under the 
trite condition 1+y/x ≤ 100,1, that is to say y/x ≤ 0,258 or 
x/y > 3,87 , (or something like that). 

3.2 Application for isolated events on a T 
duration 

Following this the contribution of the emerging noises 
during a T period is practically alone in the global Leq 
whenever the condition (∑i ∆ti)/Tf 10(TELi-Lf)/10 > 3,87 is 
checked, and one has the common approximation LeqT = 
10 log{1/T  ∑i ∆ti 10TELi/10}. 
 
When the isolated acoustical emergences are more or less 
equal, with common data TEL and ∆t, one obtains LeqT = 
10 log{Tf /T 10Lf/10 + n ∆t/T 10TEL/10}. Then the previous 
dominance condition yields the simpler formula LeqT =  
10 log {n ∆t/T 10TEL/10} = TEL + 10 log n + K, with the 
special term 10 log n, in which the events number n on the 
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T period appears. 
 
When the emergences are slightly different, TELi and ∆ti, 
one has again ∑i ∆ti 10TELi/10 = (∑i ∆ti) 10TELeq/10 with an 
equivalent TELeq and a mean event duration ∆moyt = 
(∑i ∆ti)/n and an analogous relation  LeqT = TELeq + 10 log 
n + K’, (moy for the French “moyenne”). 
 
Then, by quasi continuity of the formula’s algebraic 
expressions, one obtains a relation in which there is the 
number of repetition of emerging events included in a 
longer duration. This is of course the classical and 
simplified transfer relation between related acoustical 
times, for instance one has this expression in a French 
psophic index  R = Lmoy + 10 log n - 34, and the 
composite noise rating, CNR = Lmoy + 10 log n - 12, [4, 6]. 
 
There is also the case of categorical events (into K classes) 
with their own respective data nk, ∆moytk and TELeqk, in 
which case ∑i ∆ti 10TELi/10 is ∑k nk ∆moytk 10TELeqk/10. It 
happens for instance for the noise exposure forecast, NEF = 
Lmoy + 10 log (nd + 16,7 nn) - 88 ; or again for the CENEL 
= SENELmoy + 10 log(nd + 3 ns + 10 nn) - 49,4  with the 
single event noise exposure level, SENEL, [6], when the 
different classes of noise isolated events are discriminated 
with fixed regulations penalties in relation to the hour in the 
day (evening + 5 dB, night + 10 dB). 

4  Some Algebra with emergences 

4.1 Isolated noises dominance 

We come back to the condition Tev/Tf 10(TELeq-Lf)/10 > 
3,87 with the level emergence δ = TELeq - Lf and the 
percentage of emergence’s duration qev = Tev/T = 1 - Tf/T, 
δ > 0 and 0 ≤ qev ≤ 1. This condition is equivalent to δ ≥ 10 
log (3,87 (1-qev)/qev) ; in the {δ, qev} plane, the checking 
area is at the right of the curve of equation δ = 10 log (3,87 
(1-qev)/qev), a decreasing curve versus qev and equal to 0 
for qev = 0,795, (figure 1). 

4.2 A condition for loneliness 

However for important qev , close to 1, and then for a large 
number of emerging isolated noises, the condition is fitted 
for a weak δ and even for negative emergences (above qev 
= 0,8). Then one has to introduce another emergence 
coefficient (all the TELi are supposed equal in order to be 
more simple),  TEL - LeqT = 10 log 10TEL/10 - 10 log(qev 
10TEL/10 + qf 10Lf/10) = - 10 log(qev + qf 10-(TEL-Lf)/10) = - 

10 log(qev + (1-qev) 10-δ/10), with the argument qev +       

(1-qev) 10-δ/10 = 10-δ/10 + qev (1-10-δ/10), decreasing versus 
δ and increasing versus qev.  

Now we pose the new condition TEL - LeqT ≥ s in order 
that the global equivalent levels LeqT does not drown or 

mask the isolated noises. This leads to the inequality qev + 

(1-qev) 10-δ/10 ≤ 10-s/10, and to the curves family of  

equations qev + (1-qev) 10-δ/10 = 10-s/10, 0 ≤ qev < 10-s/10, 
increasing versus qev, equal to δ = s at the origin, and 
tending to + ∞ when qev tends to 10-s/10, figure 1.  
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figure 1, emergence and loneliness conditions 

 

Then the events which are at the same time isolated and 
emerging have to check a minima these two conditions. 
And coming back to the number of events n = qev T/∆t this 
show that n cannot be too large. Following an image or an 
analogy one may say that “events kill events”, understood 
as an identified isolated acoustical phenomenon. 

5  Some Statistics with emergences and 
Lx indices 

5.1 The Lx calculation 

This same idea may be accounted for with the Lx statistical 
indices and another technical formalism. 
Indeed, the noise levels are not time constant and they 
show a temporal evolution ; then they scan a level interval 
[Lmin Lmax] for every time interval T, and their related 
statistical distribution is summarized by a cumulative 
distribution function, cdf, FL. For every 0 ≤ x ≤ 1, the Lx 
index corresponds to the level overpassed during x% of 
time and then obeys to the relation FL(Lx) = 1-x, (note that 
it is the opposite convention for usual statistical fractiles 
FU(qx) = x).  

We suppose that the ground level Lf follows a distribution 
with Ff(Lf) on [Lf,min, Lf,max], and that the emerging noises 
Lev follow another distribution with Fev(Lev) on [Lev,min, 
Lev,max], under condition Lf,max  ≤ Lev,min. We also pose a 
model into which the resulting noise level L follows a 
linear mix of the two previous distribution with F(L) = (1 - 
qev) Ff(L) + qev Fev(L). Whenever there is x ≤ qev, one 
obtains Lx ≥ Lev,min, and then one may calculate Lx with 
the cdf Fev alone because the general relations (1 - qev) 
Ff(Lx) + qev Fev(Lx) = 1 - x  becomes (1 - qev) + qev Fev(Lx) 
= 1 - x for Lx > Lev,min with the solution                 
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Lx = Fev
-1[(qev-x)/qev]. 

5.2  The Lx evolution or tendency 

When the part of the emerging noises tends to 1, that is to 
say when the emerging noises become more numerous, the 
more the indices Lx = Fev

-1[(qev-x)/qev] are definite, L80, 
L90, L95, …, and that they respectively tend to Fev

-1[(1-
x)/1] that is to say Lx,ev. This accounts for the fact that the 
more emerging noises there are above the ambiant noise, 
the more the statistical distribution of resulting noise levels 
L tends to the distribution of emerging noises, following a 
convergence in distribution, [11].  
 
This very simple model is sufficient to show again that 
“events kill events” with this time a statistical reasoning. 
But unfortunately for silence and environment, the killing is 
not in the “good” direction because the highest noise levels 
do not disappear. It is better to say that “events absorb 
events” into the growing population of emerging high noise 
levels, and that what is killed is rather the identification of 
isolated events, and the related suitability of the 10 log n 
algebraic term into the formulation of LeqT . 

6  A probabilistic development with 
Beta laws (or distributions)  

6.1  The distribution of isolated events 

When one introduces a probabilistic (or statistical) 
distribution for noise levels as in § 5, one gives up the more 
or less implicit simple rectangular diagram for the 
emergences as we did in § 3 and 4. But this offers the new 
possibility to envisage the design of the event’s temporal 
evolution, because here we have two ways to describe this 
isolated event. First the classical acoustical temporal 
signature L(tj) on the ∆Tev interval varying from Lev,min to 
Lev,max or more simply from Lmin to Lmax, and second with 
the statistical distribution coming from the histogram of the 
L(tj) values and represented by the cdf Fev(L) and the 
different fractiles Lx, a distribution on [Lmin, Lmax], 

6.2  The Beta laws 

One may be more detailed when using some known 
probabilistic laws and Fev, here for instance the Beta laws 
Be(p,q) with the two parameters p and q, [5, 11] ; note the q 
notation is classical and has no relation with the previous 
qev percentage of time for emerging events.  

The probability density of the Be(p,q) law is fp,q(u) = up-1 
(1-u)q-1/B(p,q) on [0, 1], with B(p,q) and Γ(p) the very 
classical eulerian functions B(p,q) = Γ(p) Γ(q)/Γ(p+q). Let 
Fp,q be the related cdf, then the cdf for the noises 
distribution is Fev(L) = Fp,q[(L-Lmin)/(Lmax-Lmin)] fot Lmin 
≤ L ≤ Lmax, and one obtains Lx = Lmin + ∆Lev Fp,q

-1(1-

x/qev) with ∆Lev = Lmax - Lmin. notation.  
 
The associated calculations are simple when one of the 
parameters is equal to 1, for instance 
- Be(1,2) law :  F1,2(u) = 1 - (1 - u)2 and  Lx = Lmin + ∆Lev 
[1 - (x/qev)1/2] , 
- Be(p,1) law :  Fp,1(u) = up and Lx = Lmin + ∆Lev (1 - 
x/qev)1/p, 
- Be(1,q) law :  F1,q(u) = 1 - (1-u)q and  Lx = Lmin + ∆Lev  
[1 - (x/qev)1/q] .  

6.3  A mix of the two technical approaches, 
and return to TEL 

One obtains 10TEL/10 = ∫∆Lev 10L/10 fev(L) dL = 10Lmin/10 

∫0
1
 10u ∆Lev/10 fp,q(u) du  = 10Lmin/10  ∫0

1
 eau fp,q(u) du  with 

a = ln10 ∆Lev/10 #  0,23 ∆Lev and TEL = Lmin + 10 log  

(∫0
1
 eau fp,q(u) du). Calculations are easy in some cases, for 

instance with Be(1,2) law one has  

I1,2 = ∫0
1
 (1-u) eau du = (ea - 1 - a)/a2 ; 10TEL/10 = 10Lmin/10 

2 I1,2 = 10Lmin/10 2 (ea - 1 - a)/a2 , TEL = Lmin + 10 
log(2/a2 (ea - 1 - a)) , and then TEL - Lx = 10 log(2/a2 (ea - 
1 - a)) - ∆Lev [1 - (x/qev)1/2], for qev ≥ x. 

 
This shows that the difference TEL - Lx is decreasing as the 
part of the emerging noise levels increases (figures 2), and 
also for the most simple Be(n,m) laws, [9]. 
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figure 2a, TEL-Lx for B(1,n) laws 
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figure 2b, TEL-Lx for B(m,1) laws 

 
In the general Be(p,q) law one remarks that the integral  

∫0
1
 eau fp,q(u) du is the Kummer confluent hypergeometric 

function M(p, p+q, a), [1], and then TEL = Lmin + 10 log 
{M(p, p+q, a)}. There are some numerical tables for the 
Kummer function and notably 
- for p = 1 , TEL - Lx = 10 log {M(1, q+1, a)} - ∆Lev  
[1 - (x/qev)1/q] , 
- for q = 1 , TEL - Lx = 10 log {M(p, p+1, a)} - ∆Lev  
(1 - x/qev)1/p . 

6.4  The p and q parameters, the design of 
the temporal signature 

Lastly Beta laws render possible a characterization for the 
design of temporal evolution. Whenever the probability 
density is high around the origin there are few levels closed 
to Lmax and the design is as a peak with a progressive 
growth in time ; this is the case for Be(p,1) laws with p < 1 
and Be(1,q) laws with q > 1. Inversely when the density is 
high close to 1, the noise levels are more concentrated 
aroud the Lmax and then the design is flatter with an 
impulsive growth ; now this is the case for Be(p,1) laws 
with p > 1 and Be(1,q) laws with q < 1.   
 
Then the parameters estimation of Beta law may provide 
some indication about the design of the L(t) signal. The 
fitting of moments Pearson method is easy to use [5], from 
the mean and variance formulae m = p

p+q
   and σ2 = 

p q
(p+q)2 (p+q+1)

  . One then obtains the estimates p* = M 

[M (1-M)
∑2

   - 1] and q* = (1-M) [M (1-M)
∑2

   - 1]. Besides 

there are two possible acoustical options for calculation of 
the corresponding statistics M and ∑2, with levels L or with 
power 10L/10, and we may apply them to many examples of 
emerging isolated noise events, [3]. 
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