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This study is led in the context of understanding sound transmission through fluid-loaded aircraft structures with
non-uniform damping. The fluid/structure coupling is here highlighted. Classic approaches using modal radiation
impedances to formulate the fluid/structure coupling do lead to complexity and are computationally time-
consuming. A method defining rigorously this coupling and avoiding the calculation of the modal radiation
impedances is proposed. This method aims at developing a simple formulation taking advantage of current

technical progress in optimization algorithms.

Sound radiation from a simply supported, baffled, fluid-loaded plate is here solved in optimizing the modal
amplitudes so that they fit the governing equation with fluid loading. To perform this optimization, a sampling of
the plate into observation points is first done, and then a modal decomposition into in vacuo modes is led.
Comparison with results from the literature over [10-1000 Hz] for a reference case of plate immersed in air
(critical frequencies equal to fc=1.2 kHz) show excellent agreement within 1dB. The simplicity and computation
time allow an extension to non-uniform damped aircraft structures and a prediction over a large frequency band.
As perspectives, results from plates with local damping patch are presented.

1 Introduction

The turbulent boundary layer excitation is one of the main
sources of aircraft interior noise over a large frequency
range. An aircraft structure is strongly heterogeneous: it is
made of an assembly of stiffened curved panels with non-
uniform skin thickness. It includes beams to support the
floor as well as large size windows in the flight deck. In the
context of better understanding and predicting, a
formulation has been developed with purpose of assessing
quickly sound radiation from these complex aircraft
structures.

This paper focuses on presenting the basics of an approach
based on modal optimization and then its advantages in the
case of fluid loaded plates. Only mechanical excitation is
here considered. The calculation of radiated pressure leads
to complexity and is time consuming even if the structure is
a simple plate. Some models predicting sound radiation
from plates with fluid loading have been proposed in the
literature, for instance [1, 2, 3, 4, 5]. They all emphasize the
difficulties to calculate the modal radiation impedances.
This problematic has been also highlighted by ref. 6. The
present method allows to avoid their calculations. Moreover
the simplicity of the formulation offers the possibility to
treat heterogeneous plates.

2  Methodology and modeling

The structure of interest is a simply supported thin
rectangular plate inserted in a baffle (Fig. 1). The baffle is
assumed to be infinite, plane and rigid. The plate-baffle
system separates vacuum (z<0) from a fluid (z>0).
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Fig. 1. Geometry of the problem.

Such indicators as Mean Square Velocity, Radiated Sound
Power and Radiation factor are assessed.

The transverse motion W(x,y) of the homogeneous plate is
given by the following Love-Kirchhoff equation:

DAZW(x;y)_a)zphW(x;y):F(X,J’)_Po(x;y) (1)

where D is the bending stiffness, p is the mass density, % is
the thickness, F(x,y) is the driving force per unit area and
Ppo(x,y) is the fluid loading pressure. py(x,y) is defined by the
well-known Rayleigh integral using Eq. (2), where S, is the
surface of the plate, k) = w/c, is the wave number, p, and ¢,
are the density and the sound speed in the fluid, and R? =
(XX + (y-y)2.
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To compute the fluid loading pressure, the collocation
method is used, which allows a relative easy calculation. To
apply this approach, the plate is discretized into N patches.
One gets the radiation impedances defined by
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where s denotes the patch index, (x,,),) are the coordinates
of the center of the patch [, d; is the distance between
patches s and ¢, S, is the surface of the patch ¢, and r is the
radius of a circular patch of surface S;.

Using these radiation impedances, a new formulation of the
fluid loading pressure is derived:

N N
pO(xs’ys):zZstV(xt’yt):ja)ZZstW(xt’yt) (5)
t=1 t=1
To model the plate behavior, a sample of observation points
verifying Eq. (1) is used:
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N
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t=1
where i denotes the observation point index, N is the
number of samples equal to the number of patches used in
radiation impedances calculation, and (x;);) are the
coordinates of the observation point i corresponding here to
the patches centers.
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To solve this radiation problem thanks to modal
optimization, modal decomposition of plate displacement is
introduced. The flexural motion of the plate is expanded
into series of in vacuo modes. The following expression is
used:

W(xi’yi)zzamn(bmn(xi’yi) (7)

where a,,, and @,,, are the modal amplitude and the modal
shape, respectively, of the (m,n) mode. In the case of a
simply supported plate, @,,, is defined by
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The set {a,,} are the unknown coefficients to be
determined. Using truncation of the series, one gets the
following plate transverse motion:
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where m,,,, and n,,,, are the maximal orders of the modes in
the x and y directions, respectively. For the sight of
simplicity, the equation of motion can be rewritten as

DV*®, (x,y,)—& ph®, (x,,,)
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3 Optimization

The present approach is a modal method based on the
optimization of the modal amplitudes, which are here the
unknowns of the governing equation of the plate. The
modal amplitudes are consequently the only variables of the
problem, i.e. the variables to optimize, while the number of
samples represents the number of equations. Solving this
problem in optimizing the modal amplitudes so that they fit
Eq. (9) represents an important simplification compared to
classical methods computing direct and cross-modal
radiation impedances, that is to say (M. X ar)
calculations of oscillating integrals.

The first approach consists in taking the same number of
equations and unknowns to get a square system, i.e. same
number of observation points as modes considered. All
algorithms studied deal with this case without any problem
of convergence. Note that a simple Gauss elimination
algorithm is sufficient for such a system. However, one can
anticipate the case of more complex plates (heterogeneous,
stiffened, ...) where a fine mesh is required and, as a result,
a large number of samples must be considered in the
simulation. For practical reasons, the square system
described before is avoided because increasing the number
of modes in the model is naturally too inconvenient.
Therefore a rectangular system is used, i.e. more samples
than modes.
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Contrary to square system, problems of convergence are
observed when the system to optimize is over-determined.
This undesirable effect is due to the well known
phenomenon in sampling called aliasing. To correct this
phenomenon, a filtering based on Daubechies wavelets is
applied to the system, which is then optimized in the least
square sense. The filter effect is illustrated in Fig. 2.

Frequency [Hz]

Fig. 2. Filter effect on Mean Square Velocity of a plate by
the proposed method in case of square system (red),
rectangular system without filtering (green) and with

filtering (blue). Case of sound radiation into air from a
simply supported thick plate (a/b=1, f,=22.7 kHz) driven by
a point force at (a/3,b/4).

4  Validation

4.1 Homogeneous plates

The modal optimization is applied to a simply supported
plate 1000 mm x 1000 mm, immersed in air and driven by a
point force F, at (0.7,0.2) of 1 N (F), = ||F},|| 6(x-0.7) o(y-
0.2) and ||F,|| = 1). To take into account this point force, the
plate is again discretized into N patches. Assuming a
uniform value of the force inside the patch excited, one gets
for all samples:

"Fp "/ S, if sample i € patch excited

F(x,.,y,.)={ (1)

0 else

where S; is the surface of the patch i.

The following properties of air are chosen to simulate the
fluid loading: p, = 1.2 kg.m™ and ¢y = 340 m.s™. In all
cases, the value of the structural loss factor is taken to be #
= 0.01. This factor is introduced in the complex Young
modulus £~ such as

E" = E(1+ jn) (12)

Fig. 3 presents the simulation results compared to reference
results from C-Valor, a commission for vibroacoustic
software validation led by the French Acoustical Society
(S.F.A.) and the French Mechanical Society (S.F.M.). An
excellent agreement within 1dB is observed over [10-
1000Hz]. This simulation was realized using a regular
sampling of the plate with N = 21 x 21 samples and 36
modes.
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Fig. 3. Radiated Acoustic Power by the proposed method

(blue) compared to reference results from C-Valor (red).

Case of sound radiation into air from a simply supported

thick plate (a/b=1, f,=1.2 kHz) driven by a point force at

(0.7,0.2).

4.2 Non-homogeneous plates

Modal optimization is then applied to non-homogeneous
plates. The present model can be easily generalized. The
governing equation is rewritten in considering the non-
homogeneity of the plate, it yields

2 2
DN*W — @’ phW + 28_D_8(V ") + 28_D_8(V W)
ox ox oy oy

9’D o'W
dy* ox’
9’D *W 9*D O'W

T3 2 =F—p0
O0xdy dxdy ox~ dy

+(V2D)(V2W)—(1—v)( (13)

where v is the Poisson ratio. Next, applying the sampling to
Eq.(13), one gets the unique change in the present theory
compared to the homogeneous case.

To validate modal optimization in the non-homogeneous
case, the prior work of Miloudi et al [7] is used as
comparison. Miloudi ef al. have put their focus on the
influence of varying thickness on sound radiation from a
baffled, simply supported plate into air. The studied
thickness is only varying in the x direction (Fig. 4) as
follows

h(x):ho(l+%x) (14)

where A, is the thickness at x = 0 and « is a given constant.
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Fig. 4. Geometry of the non-homogeneous plate.
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Fig. 5. Radiation factor (right side) into air by the proposed
method (blue) compared to results from Miloudi et al. (red).
Case of a simply supported thick plate (a/b=1, a/h=100,
f:=1.2 kHz) with varying thickness (a=1) driven by a point

force at (0.33,0.38).

The radiation efficiency of a simply supported steel plate
1000 mm x 1000 mm with 4, = 8 mm and « = 1, immersed
in air and driven by a point force at (0.33,0.38) of 1 N, is
here investigated. Fig. 5 shows an excellent agreement
between optimized results and those ones from Miloudi’s
work. This observation gives credit to the generalized
model, which seems to be also powerful with non-
homogeneous plates. In addition, one can also notice here a
real advantage of this approach compared to classical ones,
that is the simplicity of changing plate structures in just
modifying the differential equation of motion.

5  Perspectives

As perspectives, an extension of the proposed formulation
to local damping is presented. The modal response of the
simply supported square plate with damping patch
described by Kung and Singh [9] is here investigated. The
homogenized properties of the multilayer damping patch
are computed using an approach developed by Guyader and
Cacciolati [8].

04 m

0.4 m

Fig. 6. Geometry of the non-homogeneous plate with
varying square damping patch.

Results from a parametric study led on patch size variation,
as described in Fig. 6, are compared to the prior work of
Kung and Singh. Good agreement is observed (Fig. 7)
between the predictions of the first natural frequency w;.
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Fig. 7. Calculation of the first natural frequency w;; into air
by the proposed method, ® , compared to results from Kung
and Singh, ©.

The authors studied only the vibration characteristics with
energy based approach whereas the proposed method
permits to predict also sound radiation as shown in Fig. 7.
In fact, Fig. 8 presents sound radiation results from the
Kungh and Singh’ plate over [100-2000 Hz] with the
present method. One can observe that radiated acoustic
power decreases when damping patch size increases
whereas radiation factor increases. As a result, damping
patches influence on aircraft structures can be investigated
thanks to this formulation.
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Fig. 8. Radiated Acoustic Power and Radiation factor into
air by the proposed method. Case of a simply supported
square plate 0.4 x 0.4 m driven by a point force at (a/3,b/4)
with varying damping patch: base plate (blue), Ya-covered

(green) and fully covered (red).
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6 Conclusion

A formulation based on modal optimization has been
presented. Its simplicity through the use of powerful
existing algorithms was attractive, and comparison with
reference results and literature has demonstrated the power
of this approach. Modal optimization permits to predict
accurately and above all very quickly sound radiation from
baffled plates. The fluid/structure coupling is thus precisely
included whereas the difficulties, both theoretical and
numerical, of calculating the exact radiation impedances are
avoided. Investigation of sound radiation over large
frequency band becomes thus possible. The simplicity of
this formulation offers also the possibility to treat different
excitations and different boundary conditions.

Furthermore, the generalization to non-homogeneous plates
allows us to investigate new applications as sandwich plates
or damping patches. Finally, the present approach can be
depicted as a powerful tool to assess sound radiation from
complex aircraft structures.
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