ACOUSTICS2008/2449 In-situ monitoring of megasonic cleaning

Aaldert Zijlstra^a, Tom Janssens^b, Paul Mertens^c and Michel Versluis^a ^aPhysics of Fluids, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands ^bIMECvzw, Kapeldreef 75, 3001 Heverlee, Belgium ^cImec, Kapeldreef 75, B-3001 Leuven, Belgium

Acoustic agitation is used in ultrasonic cleaning to induce a physical force to remove nanoparticles in semiconductor processing. The performance of cleaning tools is commonly quantified ex-situ by the particle removal efficiency η (i.e. the ratio of the remaining to the original particle concentration). The resulting η -wafer maps often reveal spatial non uniformities related to tool design. The local study of the cleaning dynamics, quantified by the removal frequency ($f_R[s^{-1}]$) also indicates that the density of cleaning events over a wafer can be strongly non homogeneous.

Because the sound frequencies used in industrial tools are in the MHz range, visualization of the cavitating bubbles (resonant size 3 μm) is highly challenging, both in time and in spatial resolution. Considering that the cleaning effect of a cavitating bubble is permanent a method is presented here to determine the acoustic cleaning event size ($A_{event}[\mu m^2]$) and the event flux ($\phi[\mu m^{-2}s^{-1}]$) through visualization techniques. The method consists of time-resolved imaging of the removal of a nanoparticle layer deposited on a transparent substrate. The microscopic cleaning activity can then be correlated to the actual removal frequencies f_R through the relation $f_R = \phi A_{event}$ to further clarify the cleaning mechanisms in industrial tools.