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On the input admittance of many violins a typical broad frequency peak, called ”bridge hill” appears
around 2.5 kHz. The physical parameters of a violin bridge have a significant influence on this feature,
and then on the tonal colouration of the produced sound.
The effect of the bridge characteristics (mass, stiffness and foot spacing) on the frequency response have
been revealed by using bridge models through several studies.
Here the parameters of the bridge response are changed, by applying an active control method. Such a
correction, very useful in noise reduction, enables to change separately the position and the shape of the
bridge hill. It is first tested on a simplified bridge model, then on a real bridge by placing 2 actuators
and an accelerometer at strategic positions.

1 Introduction

The sound production of most bowed string instruments
is due to three essential components: the strings which
are excited by the musician, the instrument body which
radiates sound all around , thanks to the movement of
the top and back plates, and the bridge, Fig.1, which
transmits the vibrations between the string and the body.
Its response has a determining influence on the resulting
sound.

Figure 1: Example of a violin bridge.

The instrument makers are aware of its role and attach
importance to its adjustement. Several frequency re-
sponse measurements of high quality violins revealed the
existence of a broad peak between 2 and 3 kHz, followed
by a steady drop in amplitude at higher frequencies[1];
an example is plotted in Fig.2. This feature is called
”bridge hill” because first, Cremer attributed its exis-
tence to the lowest resonance of the bridge [2].

Figure 2: Input admittance of a real violin bridge.

Then many studies have proposed bridge models in or-
der to explain the cause of this hill and to make clear
the effect of the bridge physical parameters on it. By
analysing Reinicke’s mass-spring model, Beldie showed
that the hill center frequency depends on its stiffness
[3, 4]. Then Woodhouse carried out a simplified model,
Fig.3, and studied the influence of its mass and of its
stiffness on the ”bridge hill” shape [5].

Figure 3: The simplified bridge model proposed by
Woodhouse.

This paper proposes an other idealised bridge model
in Fig.4, simple enough to foresee its behaviour. First
it is described and compared to the models introduced
above. Then its physical parameters are changed in or-
der to find out their effect on its frequency response. In
the last part an additional couple of forces is exerted on
the model to modify the bridge hill shape in real time.

Figure 4: An other violin bridge model.

2 An other violin bridge model

The purpose of this study is to change the bridge re-
sponse of a violin with an active control method. After
applying this feedback correction on a bridge model, it
is intended to be tested on a real bridge by using one
sensor and two actuators. Their localisations are all the
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easier to find since the model looks real. Because of this
last issue the torsion spring of Woodhouse’s model is re-
placed here by two classic springs of stiffness k, which
can only move in phase opposition. Thus they enable the
bridge to get a rotational movement. As in Woodhouse’s
model, only the upper part mass is not neglected. It is
divided in two components, cf Fig.4: the point M , where
the strings rest (mass = m1), and the horizontal piece
linked to the springs at points A and B (mass = m2,
length = d). a is the length of the rotating link between
M and G, and l0 is the length of the springs. θ is the
angle between [AB] and the bridge base, whereas θv is
the angle between the bridge base and the horizontal
rest position of the violin plate. Their sum is called θb.
The upper part of the bridge is subjected to the force
applied by the string in M , Fejωt, and the forces ap-
plied by the springs in A and B: T1 in A and T2 in B.
The sum of their moments, calculated around the fixed
point O is :

Fejωt(l0 cos(θ) + a)− sin(2θ)
d2k

4
= Jjω

Vb
l0 + a

(1)

where J(= m1a
2 + m2d

2

12 ) is the moment of inertia of
the bridge upper part and Vb is the linear velocity of
the point M . The bridge admittance Yb, defined as the
quotient θ+θv

Fejωt is obtained by differentiating the equa-
tion (1). Assuming that θ is a very small angle, cos(2θ) ≈
cos(θ) ≈ 1 and sin(θ) << cos(θ); hence

Yb = (l0 + a)2 jω + kd2R
2

(jω)2J + kd2

2 (1 + JRjω)
(2)

Woodhouse [5] led an equivalent calculation by using
Reinicke’s model with a torsion spring k′, a punctual
mass m′ and a rotating link length a′. He gets the same
results with k′ = kd2/2, m′ = J/(l0 + a)2 and a′ = l0 +

a. As its resonance frequency is 1
a′

√
k′

m′ , in our model

it is defined by Ωb = d
√

k
2J . Therefore k = 2J(Ωb

d )2.

The rotational admittance is expressed by using the vi-
olin model of Woodhouse [5]. It incorporates the top
and back plates of the body as two rectangular bending
plates with hinged boundary conditions all around. It
also includes the soundpost as a massless and rigid link
between both plates. The velocity of the plates at the
contact points is the same. R is plotted in Fig.5. With
such a model, it is composed by a set of eigen modes.

The constants l0, a, d and J that appear in the expres-
sion of Yb are estimated with a real violin bridge:

- l0 = 0.01m

- a = 0.03m

- d = 0.03m

- mtot = 0.5g and m1 = m2 = mtot/2

- J = m1a
2 + m2d

2

12 = 2.4375.10−7kg.m2

On the measurement of bridge mobility carried out by
Jansson and Bissinger [6, 7], no isolated bridge reso-
nances were observed. Here the chosen value of Ωb is
2π × 3kHz, so that it approximatively fits in with the
lowest bridge in-plane resonance. Consequently the stiff-
ness of each spring is k = 192457N.m−1. On Fig.6, Yb

Figure 5: Rotational admittance calculated with
Woodhouse’s violin model.

is plotted and the bridge hill is guessed around 2.8kHz.
Thus the described model with two springs is in accor-
dance with the earlier models using a torsion spring.

Figure 6: Bridge mobility calculated with the bridge
model described here

3 Changing the bridge physical
parameters

The previous part was dedicated to describe a bridge
model and to plot its frequency response. Now it would
be interesting to assess the influence of its physical pa-
rameters on it. It is therefore essential to display the
bridge hill without the resonance peaks of the rotation-
nal admittance, in order to measure its characteristics
accurately.

3.1 How to measure the bridge hill char-
acteristics

Woodhouse explains why those peaks disappear if the
violin top and back plates are replaced by infinite plates
[5]. Actually no wave propagating on such a body is
reflected, because its boundaries are infinitely far away.
Thus no resonance peak occurs, since no standing wave
settles.
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If the violin body model is modified, then the expres-
sion of R also changes. Actually it depends on the violin
body admittance at the bridge feet and at the sound-
post position [5], and now those magnitudes are differ-
ent since the violin plates are infinitely large. The new
rotationnal admittance is called R∞. The bridge admit-
tance is calculated again, Yb∞ while replacing R by R∞
in (2):

Yb∞ = (l0 + a)2 jω + kd2R∞
2

(jω)2J + kd2

2 (1 + JR∞jω)
(3)

It is plotted in dashed line on Fig.6. The resonance
peaks due to the rotationnal admittance have been re-
moved. Such a smooth bridge response is called a skele-
ton curve by Woodhouse [5]. Now the bridge appears
clearly and looks like the frequency response of a second
order filter. Its eigen frequency, its damping factor and
its maximum gain can be easily measured and compared
to those of other bridge responses.

3.2 Influence of some bridge physical pa-
rameters on the bridge hill

The next stage consists in discussing the effect of some
physical bridge characteristics on the width, the height
and the place of the hill. While a violin maker can not
easily change the geometric characteristics of the bridge
without modifying the playing comfort, he would rather
control independently the bridge mass and the stiffness.
The total mass can be reduced by removing matter from
the ”bridge heart”, whereas the stiffness can decrease by
digging the ”bridge ears”, cf Fig.1. The result of these
alterations is looked in the bridge model by varying the
values of the mass and of the stiffness in the expression
of Yb∞:

Figure 7: Variation of the bridge’s mass

On the Fig.7, the total mass mtotal is increased while
keeping k fixed. In this case, the bridge hill center fre-
quency, the damping factor and the maximum gain de-
creases.

On the Fig.8, the stiffness k is increased while keeping
m fixed. Hence the hill frequency gets higher whereas
the damping factor and the maximum gain decreases.

Figure 8: Variation of the bridge’s stiffness

These results confirm those achieved by Woodhouse [5]
and Beldie [4]. They are also in accordance with the
behaviour of a simple 2nd order harmonic oscillator mass
M , stiffness K, damping R which resonance frequency

and damping factor are respectively
√

K
M , and

√
KM
R .

4 Correction of the violin sound
parameters by active control

The bridge filters the excitation provided by the strings
vibrations. Thus, while changing its frequency response,
the instrument timbre gets modified.

4.1 Definition of the parameters to change
in the violin response

Some harmonics of the played notes can be emphasized
or dampened by changing the position of the bridge
response bandwidth, its amplitude and its selectivity.
Consequently controlling the resonance frequency, the
damping factor and the maximum gain of the bridge
admittance should enable to modify the violin’s sound
identity.

The expression of Yb∞ is very similar to the frequency
response of a 2nd order harmonic oscillator. Indeed, by
using Eq.(3), its eigen frequency, damping factor and
maximum gain are respectively defined as:

f0b = d

√
k

2J
= d

√
k

2(m1a2 + m2d2

12 )
(4)

Qb =
1

dR
√

kJ
2

=

√
(2)

dR
√
k(m1a2 + m2d2

12 )
(5)

H0b =
(l0 + a)2

J
(

1
jω

+
2

kRd2
) (6)

Since the moment of inertia J and the total mass mtotal

vary in the same way, the phenomena observed on the
skeleton curves (figures [8] and [9]) become clear: Qb
and H0b are all the more decreased when J or k are
increased, Eq.(5) and (6), and f0b gets higher when k
increases and lower when m increases, Eq.(4).
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4.2 Correction by active control

Changing the bridge mass and stiffness causes simulta-
neous modifications of the height, the width and the
place of the hill. A PID correction applied to a 2nd or-
der harmonic oscillator enables to bring its resonance
frequency, its Q-factor and its maximum gain under in-
dependant control.

Figure 9: Feedback correction applied on a real bridge

In such a looped system, plotted in Fig.9, u is the oscil-
lation velocity. The feedback force generated by the PID
corrector is fcorr = Pu+ I u

jω +Djωu, so that the con-
trolled oscillator gets new parameters f ′0, Q′ and H ′0. In
this case the coefficients P , I and D can be expressed in
function of their relative variations ∆ω0, ∆Q and ∆H0

[8].

However the described bridge model placed on an in-
finitely large body is not really a 2nd order harmonic os-
cillator. Indeed its parameters f0, Q andH0 are not con-
stant since the rotational admittance depends on the fre-
quency Eq.(4),(5) and (6). Despite that, let us focus on
the effect of a PID correction on the bridge hill parame-
ters. A couple of forces are applied on the bridge upper
part, so that their resulting moment is P

.

θb +Iθb+D
..

θb,
cf Fig.4. Because of this additionnal moment, the bridge
mobility is modified:

Yb∞ =
(l0 + a)2(jω + k′R∞)

(jω)2α+ jωβ + γ − Iδ
jω

(7)

where k′ = kd2

2 ,
α = (J −D),
β = (J −D)R∞k′ − P ,
γ = −I + k′(1−R∞P ),
and δ = k′R∞.

In Eq.(7), the denominator remains a 2nd degree poly-
nomial only if I = 0. In this case, the new parameters
ω′0, Q′ and H ′0 depend on P and D:

ω′0 =

√
k′(1−R∞P )

J −D
(8)

Q′ =

√
k′(1−R∞P )(J −D)
(J −D)k′R∞ − P

(9)

H ′0 =
(l0 + a)2

(J −D)k′R∞ − P
(1− jk′R

ω
) (10)

This equations system gives expressions of P and D in
function of the input values ∆ω0 and ∆Q:

P =
1

(1+∆Q)(1+∆ω0)2

R∞k′J(∆Q−∆ω0) +R∞
(11)

D = J(1− 1 + ∆Q
(1 + ∆Q)(1 + ∆ω0)2 +R2

∞k
′J(∆Q−∆ω0)

)

(12)

An other relation is given by the system, between ∆H0,
and the coefficients P and D:

∆H0 =
1

J
D+ P

k′R∞
− 1

(13)

Therefore ∆H0 can be deduced from ∆Q and ∆ω0. As
a conclusion, while I = 0 the feedback loop imposes the
value of two parameters, Q and ω0 for instance, with-
out controlling the third variation ∆H0. The Fig.11
and Fig.12 display different bridge responses resulting
of some PD corrections:

Figure 10: Correction of the damping factor with an
”ideal” PD corrector

Figure 11: Correction of the resonance frequency with
an ”ideal” PD corrector

First, on Fig.10, the damping factor is varied while im-
posing ∆ω0 = 0. The skeleton curves have been nor-
malized. In this way, ∆H0 can not appear and the Q
variations are clearly perceived. All the same, the res-
onance frequency of the bridge hill changes although it
should remain constant. Especially, ω0 decreases while
∆Q < 0. Then, on Fig.11, ω0 is modified while keeping
∆Q = 0. Here the curves are not normalized. That
is why some gain modifications appear. The Q-factor
seems to remain constant. However the ω0 variations
do not achieve the exact desired correction. In both
extreme cases ∆ω0 > −18% and ∆ω0 < 18%.
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Actually as R∞ is a complex value, ω0, Q and H0 are
also complex. Therefore their value are not the res-
onance frequency, damping factor and maximum gain
that are actually measured on the figure, because their
imaginary part is not equal to zero. That is why the hill
is not exactly centered in 3kHz. Moreover ω0, Q and
H0 depend on R∞ and then also depend on ω0. Conse-
quently, as the P and D coefficients of the controller are
deduced from those parameters, they are not constant
values either. To carry out a simplified correction on a
real bridge, R∞ just needs to be replaced by a constant
value in the expression of P and D.

4.3 How to apply the correction on a
real bridge

This last paragraph proposes a method for controlling
a real violin’s bridge response. The PD correction de-
scribed above is obtained by applying an additionnal
couple of forces, which moment depends on the bridge’s
angular velocity. This force signal can be generated by
using an accelerometer that measures θb. Then the con-
troller calculates the P and D coefficients in function of
the ∆ω0 and ∆Q variation desired by the user in real
time.It deduces the value of the following force signal:
Fcorr = 1

d (P
.

θb +D
..

θb ur) Two actuators have been
wedged in the ”bridge ears” to apply this correction to
the mobile part of the bridge. The system is described
in Fig.12.

Figure 12: Real bridge provided with 2 actuators and 1
accelerometer

Actually Fcorr is send to the first actuator (for instance
placed in A), and its opposite to the other one (placed
in B). Assuming that the actions of both actuators
are perpendicular to the bridge base, then the resulting
moment around O is:

M →
Fcorr

= P
.

θb +D
..

θb (14)

Thus, the movement of the real bridge should be de-
scribed by Eq.(7). Consequently its frequency response
must get modified as observed in Fig.10 and Fig.11, ac-
cording to the correction imposed by the instrumentist.

5 Conclusion

Applying active control to a vibrating system modifies
the parameters of its movement. This technique has

been used here to change the frequency behaviour of a
violin bridge. In particular the purpose was to control
the shape of the ”bridge hill”, since its influence on the
violin sound is significant. Thanks to a feedback correc-
tion, the resonance frequency and the damping factor
of the bridge response have been brought under inde-
pendent control. Those results have been obtained by
controlling a very simplified bridge model. Such a cor-
rection has also been carried out on a real bridge and has
permitted to hear timbre modifications in the produced
violin’s sound.
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