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In this contribution a statistical prosodic model for the voice-conversion task is presented. Voice
conversion (VC) aims to transform the voice of one speaker in such a way that the converted voice
sounds as if it was uttered by another speaker. The meaning and content of speech are not changed.
Nowadays, VC-systems suffer from a poor naturalness and quality of the transformed voice due to not
including any prosodic model. Therefore, a statistical prosodic model is introduced that is based on
Gaussian-Mixture Models (GMMs). The GMMs are trained for the fundamental frequency f0 and the
duration T of diphones. To ensure sufficient training data for the GMMs, the diphones are grouped into
classes related to the International Phonetic Alphabet.

1 Introduction

Nowadays Text-to-Speech (TTS-) systems try to increase
their acceptance by adapting the system to the user and
his/her usage. Different approaches exist, but they are
directed to the sound quality of the synthesized voice
mainly. In some approaches the global aim is to build
synthesised voices that sound “natural” and “human-
like”, while other approaches try to create voices that
sound like a specific person. The latter case is known as
so-called “custom voices” [1] or “corporate identities”
[2]. Corporate identities are interesting for companies
especially due to giving the ability to represent the firm
by one specific voice in public. Whenever a person hears
that voice it will be reflected to the company and its
products. So, corporate identities are a new form of
advertisement.

Naturalness and also intelligibility can be reached by
using recordings of human voices. Short speech compo-
nents are concatenated to form the output voice. Using
such a technique is time consuming and also costly. In
addition, the vocabulary is limited due to giving the op-
portunity of concatenation for known words or syllables
only. If a word or a syllable is missing, it will be left
out or created artificially by using specified rules. Thus,
the generated voice sounds unnatural and robotic due
to using a different flow of words that stands in contrast
to the speech flow of the original speaker.

A technique that has the potential to create a per-
sonalised TTS system and saves ressources, is voice con-
version (VC). In VC the aim is to transform the voice
from one speaker (source) to sound as if it was spoken by
another speaker (target) without changing the meaning
or the content of speech. Usually, a set of training ma-
terial is recorded from the source and target speakers,
and one or more conversion models are trained. In the
literature different approaches in respect to voice con-
version have been proposed. From the technical point
of view, statistical models are interesting as presented
in [3] and [4]. The reason for this is in the characteris-
tics of the speech signal. Speech varies from person to
person strongly because it is related to the emotion of
any person and, thus, expresses joy, sorrow ,or anger.
Furthermore, speech represents the mental attitude of a
speaker by indicating whether he/she expresses ridicule
or suprise. Therefore, using any rule-based approach as
introduced in [5] and [6] seem not to make sense: Rules
cannot model all nuances of speech and thus will lead
to limitations.

The transformed voice can only sound natural, if it
includes all characteristics relevant for the true target
speaker. Within VC-systems, a main problem is the
mapping of the prosody which is one of the essential

features. The prosody describes the rhythm and the
intonation of speech so that it differs from speaker to
speaker. In addition the prosody includes information
on the stress as well as the lengthening and shortening
of words and sentences.

In [7], Helander et.al. show that modelling the proso-
dy will increase the quality of a VC-system in respect to
the identity of the transformed voice and the true target
speaker. In her work, Helander uses a classification and
regression tree to build a prosodic model which maps the
prosody of source and target by using a codebook. That
approach is interesting as a first approximation, but a
rule-based model, as given by a codebook mapping, can-
not be effective in general due to the characteristics of
any speech signal. Speech cannot be modeled by rules
so that an enhancement should result from a statistical
prosodic model.

This contribution introduces a statistical prosodic
model for voice conversion. The approach is based on
Gaussian-Mixture Models (GMMs) that are trained for
the fundamental frequency f0 and the duration T of
diphones, respectively. To ensure sufficient data for the
training of the GMMs, the diphones are separated into
classes that are related to the International Phonetic
Alphabet (IPA) [8].

The paper is organised as follows. In Section 2 pro-
sodic models known from the literature are compared in
respect to their suitability for voice conversion. Then a
statistical model for voice conversion is presented. Sec-
tion 3 focuses on experiments which were carried out
to determine the optimal parameters for the presented
model. The experimental results are discussed in Sec-
tion 4. Section 5 concludes this contribution.

2 Prosodic models

2.1 Prosodic models in phonetics

Within the literature, the term “prosodic model” is not
used consistently. Some “intonation models” exist that
describe more than the intonation or the tonal (melodic)
aspects and thus can be said to be prosodic models.
However, as known from phonetics, prosodic events can
be studied at three levels of representations, i.e., the
acoustic level, the perceptual level, and the linguistic
level. Acoustic models are derived from a parametrisa-
tion and analysis of the speech signal. The prosody is
described by the pitch f0, duration T and/or the am-
plitude. The so-called Fujisaki model [9] belongs to
the class of acoustical models and gives a representa-
tion of the prosody in terms of the f0-contour. In con-
trast to the acoustic model, perceptual models represent
prosodic events as heard by the listener. They give infor-
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mation about the perception, like the tone pitch. Such
a model is given by [10]. Finally, the linguistic level
represents the prosody of an utterance as a sequence
of abstract units (signs, symbols), some of which have
a communicative function in speech, while others may
just fulfil syntactic requirements [11]. Thereby, the lin-
guistic model is a structural interpretation of the data,
which results from the analysis of prosodic data by a lin-
guist. The so-called “Kieler Intonation Model (KIM)”
[12] belongs to the class of linguistic models.

2.2 Prosodic model in voice conversion

In respect to voice conversion, the term prosodic model
has to be distinguished from its use within phonetics. In
VC, a prosodic model is a parametrisation of a speech
signal by prosodic features that allow a conversion of
the voice under several conditions. In this context re-
strictions are given by the algorithm that is used to map
the prosody of the source to that of the target speaker,
which should be a statistical approach in this case, and
the amount of data that is required to train the GMMs.
Furthermore, the question of how to cope with many-
to-one and one-to-many mappings has to be answered.
To describe the prosody in terms of features, f0 and T

are used first of all.
The presented statistical model is based on M Gauss-

ian-Mixture Models that are used to describe an arbi-
trary conditional probability function P (Ci|x). The
conditional probability P (Ci|x) describes that an ob-
servation vector x belongs to the acoustical classes Ci

of the GMM. A class Ci, i ∈ {1, 2, ..., M}, is given by a
D-dimensional normal distribution with mean vector μ

and covariance matrix Σ according to

N (x; μi, Σi) = (1)

1(√
2π

)D |Σi|−
1
2 exp

{
−1

2
(x− μi)

TΣ−1

i (x− μi)

}
.

In Eq. (1) the exponent T indicates a transposition.
The mean vector μ and the covariance matrix Σ can
be estimated using the expectation-maximisation (EM)
algorithm that is described in [13, 14] in more detail.

With the help of Bayes’ rule, the conditional proba-
bility P (Ci|x) and thus the GMM can be given by

P (Ci|x) =
αiN (x; μi, Σi))∑M

j=1
αjN (x; μj , Σj)

, (2)

where αi, i ∈ {1, ..., M}, are the mixture weights repre-
senting the statistical frequency of each of the M classes
in the observation. They have to fulfil the condition

M∑
i=1

αi = 1. (3)

Using Eq. (2) leads to the conversion function G(x)
which can be given in analogy to [3] as

G(x) =

M∑
i=1

P (Ci|x) [νi + max {Φi, ε}(x− μi)], (4)

where μi and νi are the mean vectors of the source and
target speakers, respectively. Φi is a correction term

which is derived from the variance σ2

x
of the source-

feature vector x and the variance σ2

y
of the target-feature

vector y according to

Φi =
E
{
(x− μi)

2
}

E {(y − νi)2} =
σ2

x

σ2
y

, (5)

where E {·} indicates the expectation operator. Φi is
limited by the factor ε, ε > 0, to prevent a too high
influence on the term (x− μi).

2.3 Conditions to be met

In the presented method, GMMs are used to build a
conversion function G(x). GMMs are commonly trained
“from scratch” using a relatively large amount of aligned
training data. The training data can be either “paral-
lel”, this means both the source and target speakers read
the same text, or “unparallel”. In this contribution, it
is assumed that the training data is parallel.

Although a parallel set of training data is used, the
utterances of source and target speakers are not aligned
perfectly. The speaking rates of both speakers differ
normally, so that corresponding data-frames cannot be
mapped directly. An alignment has to be performed.
The simplest alignment technique is linear interpolation
that assumes a global variation in the speaking rate.
However, the speaking rate varies not only globally due
to the speaking style and the emotions of a speaker.
Thus, local variations have to be taken into account that
lead to a non-linear interpolation. Non-linear warping
can be obtained using the dynamic time warping (DTW)
algorithm that finds an optimal path through a differ-
ence matrix computed between the source and target
features.

The purpose of DTW is to generate a non-linear
warping function of feature sequences along the time
axis. This means a target frame can be mapped to more
than one source frame. Also, a source frame can have
more than one target frame mapped into it. This re-
sults in one-to-many and many-to-one mappings. If the
speaking rate of source and target speakers differ sig-
nificantly, this can lead to ambiguous training data. In
that case the GMMs would be trained inaccurately.

Furthermore, it is essential that a high amount of
training data is available to train the GMMs sufficiently.
In this approach, it is assumed that multi-phones (M-
Phonesi) represent the prosodic properties to be de-
scribed by GMMs. In this context a MPhonei is de-
fined as a concatenation of i phones, where i = 1 is
a phone (MPhone1), i = 2 a diphone (MPhone2) and
so on. Generally, a single phone cannot represent any
prosodic property due to its missing context. Thus,
GMMs are trained for MPhonesi , where i ≥ 2, to model
the prosody. To overcome the problem of having too few
training data to train the GMMs for one MPhonei, the
data is grouped into seven classes related to the IPA.
The classes are specified as follows: plosive, nasal, frica-
tive, lateral, vowel, diphthong, and miscellaneous. Any
combination of different classes is possible, if the index
i of a MPhonei is greater than 1.

In contrast to VC that transforms the voice from a
source speaker to sound as if it was spoken by another
speaker, the transformation of the prosody has to be
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performed the other way around: The output voice shall
sound like the true target speaker but the speaking style
and also the emotions of the source speaker shall be kept.
Thus, the source speaker determines the prosody. This
is opposed to the voice-conversion task but required to
prevent that the transformed voice sounds for example
happy due to the given training data while the source
speaker speaks sadly.

3 Experiments

The database consists of a set of the Berlin sentences
taken from the German speech database “The Kiel Cor-
pus of Read Speech” (KCoRS) [15] sampled at 16kHz.
All the sentences have been manually labelled by experts
so that these labels are assumed to be precise and taken
for the determination of the duration T of the MPhonesi.
The GMMs for f0 and T are trained on 80 of 100 sen-
tences for the speakers k04, k05, k06 and k65 (2 female,
2 male) using a different number M, M ∈ {1, 2, ..., 10},
of normal distributions to model the prosody. In ad-
dition, it is analysed, if MPhonesi to the base i equal
to two and three are appropriate to model the prosody.
Furthermore, the correction term Φi and its influence
on the conversion of the prosody is analysed by limiting
the variance of f0 and T .

During the experiments the fundamental frequency
f0 is determined using the proposed algorithm by Boers-
ma [16] which is based on the autocorrelation method.
Pauses and/or silent frames are not included in the train-
ing of the GMMs. In addition, MPhonesi are not cre-
ated over word boundaries. This means, the MPhonesi
are provided from single words only, not including any
pauses.

During the evaluation of the presented model, 20
sentences from the Berlin sentences of the KCoRS, that
were not included in the training data, are used to con-
vert f0 and T by using Eq. (4). The performance of
the conversion was analysed by an informal subjective
listening test and by f0- and T -contours.

4 Results

Starting from the experiments described in Section 3,
the figures 1 and 2 show results converting the prosody
of identical genders (male-to-male, Fig. 1) and different
genders (male-to-female, Fig. 2) using MPhones2 and
M = 5 GMMs. A conversion from female-to-male and
from female-to-female is left out due to having the same
aspects and problems as the presented conversions suffer
from.

All figures show the f0-contours of the source speaker
(top), the target speaker (bottom) and the transformed
f0-contour (middle). In the case of a same-gender con-
version (Fig. 1) the f0-contours do not differ largely
from source and target speakers, except in their time-a-
lignment. Thus, a prosody conversion succeeds in most
instances. However, if the GMMs are not well-trained
for any MPhonei combination due to being rare or even
missing within the training data, a prosody-conversion
fails. Discontinuities in the f0-contour result which lead
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Figure 1: f0-contours of source (male, k05) (top) and
target speakers (male, k65) (bottom) as well as the

transformed f0-contour (middle), using M = 5 GMMs
and MPhones2
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Figure 2: f0-contours of source (k05, male) (top) and
target speakers (k06, female) (bottom) as well as the
transformed f0-contour (middle), using M = 5 GMMs

and MPhones2

to a unnatural sound of the transformed voice. If M-
Phones3 are used, the amount of data is smaller com-
pared to MPhones2 so that discontinuities occur more
often. Thus, it is recommended to use MPhones2.

If a cross-gender conversion of the prosody is per-
formed (male-to-female, Fig. 2), the conversion does
not succeed as well as for the same genders. This is due
to the difference of the f0-contours so that the charac-
teristics of the target speaker will still have influence
on the transformation. This can be seen from the con-
verted f0-contour in Fig. 2, where the characteristics of
the converted f0-contour go down starting from frame
80 while the source speaker does not have that strong
descent.

In addition, the number M of GMMs has an influ-
ence on the conversion. In fact, the more GMMs are
used to model any probability function, the better the
approximation of the function will become. However, if
a prosody conversion is performed this statement does
not hold due to the following fact: The amount of train-
ing data is limited for many reasons. So, the approxi-
mation of a probability function as given by the GMMs
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cannot be as precise as it should be. An error will oc-
cur that leads to oversmoothing of the GMMs. This
will result in discontinuities in the converted f0-contour
which in turn influence the naturalness of the prosody.
Figure 3 gives an example for a male-to-male conver-
sion using M = 8 GMMs to model the prosody. The
effect of oversmoothing can be seen clearly within the
frames 75 to 125 of the converted f0-contour due to the
discontinuities in the f0-characteristics.
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Figure 3: f0-contours of source (k05, male) (top) and
target speakers (k65, male) (bottom) as well as the

transformed f0-contour (middle), using M = 8 GMMs
and MPhones2

Furthermore, if the amount of training data is small
but the number M of GMMs is large, the variance of
each GMM will decrease. In the worst case, each sample
of the training data will belong to one single GMM,
and the variance will be zero. Thus, the GMM will
become a dirac impulse and the conversion will be a
single mapping of two data points. A codebook mapping
will result which stands in contrast to the statement
that a rule-based approach cannot include all aspects
of a speech signal due to the variability of the voice.
To overcome this problem, the factor ε is introduced in
Eq. (4) which provides a minimal variance and thus
guarantees the variability of the speech signal.

An analogous effect happens, if the number M of
GMMs is too small. In this case the variance of the
GMM will not become zero but it will be large. So,
the variability within the speech signal will get lost due
to creating one single GMM for different aspects of the
prosody. This will also lead to discontinuities within the
f0-contour and will effect the naturalness of the con-
verted voice.

During this study, a number of M = 5 GMMs per-
formed best.

The speaking rates of two speakers differ normally
due to their speaking style. The speaking rate varies lo-
cally so that GMMs for the duration T of MPhonesi are
trained. The conversion of T turned out to be difficult
in respect to the quality of the transformed voice. The
used Synchronised Overlap-Add (SOLA) algorithm [17]
can lead to discontinuities which are audible by distor-
tions in the converted speech signal.

5 Conclusion

Generally, the prosody can be modeled in a statistical
way by using GMMs. Such a model is suitable for voice
conversion, if the model parameters T and f0 are used.
However, a statistical model depends on the amount of
training data used to train the GMMs. Normally, the
amount of data is strongly limited in voice conversion,
so that strategies have to be invented to increase that
amount. The presented model is based on MPhonesi, a
concatenation of i phones, whose number of occurrence
is limitted due to the training data. Thus, the GMMs
would not be trained sufficiently, if GMMs would have
been build for any single MPhonei. So, the MPhonesi
were grouped into classes in respect to the IPA and the
GMMs trained on those groups.

The experiments show that GMMs for MPhones2
can be generated sufficiently well and that the context,
one of the fundamental requirements to model the pro-
sody, is included. From the theoretical point of view,
also GMMs for MPhones3 should guarantee a prosody-
conversion but the amount of the used training data is
too small to train the GMMs sufficiently. In such cases,
discontinuities in the converted f0-contour occur that
lead to an unnatural sound. Thus, MPhones2 are rec-
ommended.

Furthermore, the experiments have shown that the
number M of GMMs also influences the conversion-qua-
lity. If M is chosen too small or too large, discontinuities
in the converted f0-contour result which will decrease
the sound-quality of the converted voice concerning nat-
uralness. During the experiments, M = 5 performed
best.

Finally, the used SOLA algorithm is one of the main
drawbacks of the presented model. It is required to allow
local changes in the speech rate depending on the M-
Phonesi. However, the algorithm leads to discontinuities
which are audible by distortions in the converted speech
signal.

In future work, the SOLA algorithm has either to
be replaced by a different approach that will not effect
the converted voice by any distortions, or some kind of
smoothing has to be performed to avoid distortions.

Furthermore, the presented statistical prosodic model
has to be expanded by a module that includes the stress.
Indeed, the stress could be represented by a change of
the amplitudes, but the perception of loudness is not
exclusively related to the amplitude (and energy) at
one point of the speech signal. It is also dependent on
the duration of a speech fragment, in this case e.g. a
MPhonei. Moreover, the loudness is not noticed at one
point, but relative to the loudness of other parts in the
signal.

In addition, in future work the use of labels taken
from the KCoRS has to be replaced by a method that
can detect the corresponding classes from the IPA itself.
A speech recogniser is able to detect and group single
MPhonesi, but its complexity seems not to be suitable in
the voice-conversion task. Moreover, a speech recogniser
also requires a lot of data during the training so that this
is the main reason why it is not reasonable for VC.
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[3] Y. Stylianou, O. Cappé, E. Moulines, “Continuous
probabilistic transform for voice conversion”, IEEE
Transactions on Speech and Audio Processing, Vol.
6, No. 2, 131-142 (1998).

[4] A. Kain, M. Macon, “Spectral voice conversion for
text-to-speech synthesis”, IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), Seattle, USA, 285-288 (1998)

[5] M. Abe, S. Nakamura, K. Shikano, H. Kuwabara,
“Voice conversion through vector quantization”,
IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), New York,
USA, 655-658 (1988).

[6] H. Kuwabara, Y. Sagisaka, “Acoustic characteris-
tics of speaker individuality: Control and conver-
sion”, Speech Communication, Vol. 16, No. 2, 165-
173 (1995)

[7] E.E. Helander, J. Nurminen, “A Novel Method For
Prosody Prediction in Voice Conversion”, IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing (ICASSP 2007), Vol. 4, 509-512
(2007)

[8] International Phonetic Association, “Handbook of
the International Phonetic Association: A guide to
the use of the International Phonetic Alphabet”,
Cambridge University Press, Cambridge, Great
Britain (1999)

[9] H. Fujisaki, “Dynamic characteristics of voice
fundamental frequency in speech and singing”,
In: P.F. MacNeilage,“The production of speech”,
Springer, New York, 39-55 (1983)

[10] C. d’Alessandro, P. Mertens, “Automatic Pitch
Contour Stylization Using a Model of Tonal Per-
ception”, Computer, Speech, and Language, Vol. 9,
Iss. 3, 257-288 (1995)

[11] T. Dutoit, “An Introduction to Text-to-Speech
Synthesis”, Kluwer Academic Publishers, Dor-
drecht, The Netherlands (1997)

[12] K.J. Kohler, “Parametric Control of Prosodic
Variables by Symbolic Input in TTS Synthe-
sis”, In: J.P.H. van Santen, R.W. Sproat, J.O.
Olive, J. Hirschberg,“Progress in Speech Synthe-
sis”, Springer, New York, 459-476 (1997)

[13] L. Rabiner, B.-H. Juang, “Fundamentals of Speech
Recognition”, Prentice Hall Signal Processing Se-
ries, Prentice-Hall Inc., New Jersey, USA (1993)

[14] A.P. Dempster, N.M. Laird, D.B. Rubin, “Maxi-
mum Likelihood from Incomplete Data via the EM

Algorithm”, Journal of the Royal Statistical Soci-
ety, Series B (Methodological), Vol. 39, No. 1, 1-38
(1977)

[15] K.J. Kohler, “The Kiel Corpus of Read Speech”,
Institute of Phonetics and digital speech processing
at the Christian-Albrechts University of Kiel, Ger-
many (1994)

[16] P. Boersma, “Accurate Short-Term Analysis of
the Fundamental Frequency and the Harmonics-
to-Noise Ratio of a Sampled Sound”, Institute of
Phonetic Sciences, University of Amsterdam, Pro-
ceedings 17, The Netherlands, 97-110 (1993)

[17] D. Hejna, B.R. Musicus, “The SOLAFS Time-Scale
Modification Algorithm”, BBN Technical Report,
University of Cambridge, Great Britain, (1991)

Acoustics 08 Paris

2262


