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Reliably tracking the fundamental frequency F0 of the components is an important step in the separation of 
superimposed speech signals. Several Pitch Estimation Algorithms (PEAs) are potentially usable and a rigorous 
evaluation method is needed. However, even in the monopitch case, many variations between them render such a 
comparison difficult. The F0min-F0max interval extent, the use of a priori information on the whole sequence or 
database and above all the arbitrary voicing threshold setting lead to large differences in the results. These biases 
can be removed by setting the F0 bounds to fixed values acceptable for many voices, by proceeding with the 
evaluation on a strictly frame-to-frame basis, and by fixing the voicing threshold in order to get an equal error 
rate for overvoiced and undervoiced frames. In the multipitch case any frame may exhibit 0, 1 or 2 valid voicing 
according to the coincidence between the voiced and unvoiced parts of both signals. This problem is treated by 
defining a metric linking the PEAS’s hypotheses to the pitch values of the isolated signals. The proposed 
methodology is applied to several PEAs on several databases in the monopitch case.

1 Introduction 

In the last five decades, numerous PEAs have been 
developed so that a proper evaluation is mandatory. Most 
PEAs process the input speech signal as successive short-
time frames. A F0 estimate is produced for each voiced 
frame.  For unvoiced frames the F0 estimate is replaced by a 
zero value. This involves two distinct processes:  
Voiced/Unvoiced (VuV) frame decision and F0 estimation. 
In some cases those processes are performed sequentially. 
In [1,3] the first step is the computation of a voicing 
criterion (typically between 0 and 1). Then this voicing 
criterion is compared to a threshold and the 
Voiced/Unvoiced (VuV) decision is taken. This is a typical 
sequential frame-to-frame approach. In some other cases 
the two processes are not distinct and sometimes they are 
mutually dependent. For instance in [2,6]  several F0 
candidates are selected for each frame and a dynamic 
programming algorithm is used to select the globally 
optimal sequence of candidates. In this case, the F0 
estimation influences the VuV decision and vice-versa. 
Eventually evaluating a PEA means simultaneously 
evaluating the two above processes: VuV decision and F0 
estimation. 
PEAs evaluation requires a database, VuV references, F0 
references and quality measures. Thus several variability 
sources should be addressed, which means numerous 
features to set and control. First of all, one has to control 
the database specificities such as the speech recording 
conditions (noise level, anechoic room, telephone, car...) or 
the type of speech (read, broadcast news, conference, 
spontaneous, expressive...). The reference voicing and F0 
labeling has to be perfectly reliable. It may differ according 
to the protocol used (manual, fully automatic or manually 
corrected); it may come from the analysis of the speech 
signal itself, or from an electroglottographic waveform 
(EGG) recorded simultaneously. The VuV decision may 
have been taken on the basis of the experience of trained 
phoneticians, or from the examination of a waveform on 
physical criteria, which may be quite different. Finally each 
PEA’s specificity should be taken into account. It may or 
may not offer the operator the capability of disabling some 
pre- or post-processing, or of modifying the main 
parameters (frame duration, frame hop, voicing threshold, 
lower and upper bounds of F0 estimation, number of F0 
candidates per frame). For all the above reasons, it is 
extremely difficult to perform a fair comparison between 
algorithms. 
In this paper we propose an evaluation methodology that 
could help containing some of the main sources of 
variability. Section 2 presents what has been done in PEA's 

evaluation, highlights how the VuV decision is problematic 
to evaluate and proposes a way to deal with it. The usual 
PEA use is the monopitch case where it has to deal with a 
one-speaker speech signal. Section 3 proposes a new 
evaluation methodology and illustrates it on a database in 
the monopitch case. Section 4 extends our monopitch 
evaluation approach to the multipitch case, in which several 
voices may be mixed in a single signal. 

2 The role of the VuV decision in the 
evaluation of F0 estimation 

The first quality measure for which a consensus in literature 
exists is the quality of the pitch estimation. What is 
generally reported is a gross error rate (GER). A gross error 
is raised when the pitch estimate lies more than a certain 
distance away from the reference (typically 20%). This 
rather high threshold has to be put in perspective with the 
typical pitch errors which are mainly octave or sub-octave 
errors and most seldom third, triple or two thirds errors [5]. 
The gross error rate does indeed capture the principal 
harmonic or sub-harmonic errors. 
F0 estimation is performed on the frames which are 
considered as voiced. In that sense, the GER calculation is 
subjected to the VuV decision. However, the voicing state 
may be ill-defined for many frames, often located at the 
bounds of the voiced speech segments. In those regions F0 
estimation may remain unsteady, whereas for frames where 
the voicing is strong, the F0 estimation is quite reliable. For 
any PEA, avoiding the litigious frames may drastically 
reduce the F0 error rate. This phenomenon is illustrated on 
Fig. 1, which shows that the GER decreases and falls to 0% 
when the VuV threshold is increased so that only the 
reliably voiced frames are taken into account. This example 
was performed on a short sample of speech with the YIN 
algorithm, but the same trend can be observed with any 
algorithm, on any speech excerpt.  
Therefore, for a given PEA the GER calculation should not 
be presented alone. It should be linked with an evaluation 
of the VuV decision. 
The results published in [3] are established on the frames 
declared as voiced by all PEAs involved in the evaluation. 
Thus they discard from the statistics the frames whose 
voicing is not reliably established. This protocol may reflect 
the intrinsic quality of the algorithm, in dealing with 
perfectly voiced sounds. But it does not give a fair idea of 
the PEA's behavior in the difficult situation encountered at 
both ends of the voiced segments. Thus, we have to 
normalize the algorithms behaviors in terms of VuV 
decision. 
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To formalize our voicing behavior normalization let us look 
at table 1 which illustrates the kinds of errors that could 
appear between the VuV state of a reference frame and the 
VuV state of an hypothesis frame. A false alarm (FA) 
called overvoiced error occurs when the hypothesis frame is 
voiced and not the reference frame. A false rejection (FR) 
called undervoiced error occurs in the opposite situation. 
 

Reference Hypothesis Agreement 
UV UV OK 
UV V FA 
V UV FR 
V V OK 

 
Table 1. Full set of reference/hypothesis couples and their 

agreement result. 

Table 1 refers to a typical problem of decision theory. This 
problem may be addressed within the Equal Error Rate 
(EER) statistical framework. A way to compare the 
different PEAs without the bias attached to their specific 
VuV behavior is to tune it so that the FA/FR ratio gets a 
constant value. Let EER be the ratio of the overvoiced error 
rate to the undervoiced error rate. The value chosen for the 
EER depends on the voicing behavior requested by the 
application where we want to use a PEA. For instance, if 
the application is only interested in strongly voiced 
segments, we should set EER at a value between 0 and 1 in 
order to get more undervoiced than overvoiced frames. For 
the present evaluation purpose we shall fix it at the value 1. 

3 Monopitch case 

In this chapter we present our evaluation methodology 
beginning with the database presentation. Then we explain 
precisely how we build our reference. Then we provide a 
general formalization of how could be represented a set of 
reference annotations and F0 hypotheses. At last, we 
propose some evaluating features and formalize them in the 
monopitch case. 

3.1 Evaluation method 

3.1.1 Database 

Our mono-speaker database is composed of three speech 
corpora, all recorded in clean acoustic conditions. The 
Keele database (noted K) comprises 10 English speakers (5 
males, 5 females) reading the same text one time and quite 
neutrally, for a total duration of 337 seconds. The Bagshaw 
database (noted B) comprises 2 English speakers (1 male, 1 
female). Both are saying the same 50 shorts utterances, for 
a total of 331 seconds. The Daless database (noted D) 
comprises 4 French speakers (2 males, 2 females) reading 
various texts quite neutrally. This database contains 1359 
seconds of speech. For all the databases, the authors give 
the EGG waveform for each speech signal.  
To build a 2-speaker mixture, two normalized signals are 
simply added. Then, the whole 2-speaker mixtures 
databases are built by forming all possible signals 
combinations. 

3.1.2 Reference annotations 
This step needs a particular care because it determines the 
quality of the evaluation results. It raises the “groundtruth” 
problem.  
Manual or manually corrected reference annotation is a 
very tedious task. It must be performed by a group of 
specialized operators to be reliable. However, the protocols 
and groups of operators differ from one database to the 
next, so that it may happen that a given algorithm gets 
different results when evaluated on different databases. 
This is why we chose to automatize the annotation process, 
even if we know that it may produce more errors than the 
manual annotation of a given database. Also, as there are 
few manually annotated databases, this approach permits 
the use of a non-annotated database. For instance our 
largest database is not manually annotated; an automatic 
annotation procedure was the only way to use it with the 
same annotation quality than the other two. In any case, a 
careful examination of each database is needed in order to 
adapt some parameters such as the F0 range. 
As EGG signals are available for all databases, we generate 
the VuV decision with them. Although it is not perfect, the 
EGG waveform is a direct trace of the vocal cords vibration 
so it should give a more reliable and steady voicing 
measure than the acoustic speech signal.  
The EGG waveform is first shaped by a bandpass filtering 
between 50 and 1600 Hz to cancel undesired noises and 
low-frequency components. Then, a positive saturation 
threshold is computed which corresponds to the amplitude 
exceeded by 5% of the samples. The same negative 
saturation threshold is computed with the negative part of 
the waveform. If the negative saturation threshold's 
absolute value is bigger than the positive saturation 
threshold then only the absolute value of the waveform's 
negative part is kept (negative half-wave rectification). Else 
a positive half-wave rectification is done. The obtained 
waveform is normalized at 0.9 and then the temporal 
envelope is computed by linear interpolation between local 
maxima. A 18-point histogram is computed from the 
envelope. The histogram exhibits two peaks, corresponding 
respectively to the unvoiced and to the voiced segments. 
The local minimum between these two peaks is chosen as 
the voicing threshold. Below this threshold the sample is 
considered unvoiced and above the sample is voiced. A 
refinement is added to avoid too short voiced or unvoiced 
segments. All unvoiced segments shorter than a first 

Fig. 1. Rate of frames declared as voiced  and  Gross 
Error Rate as functions of the VuV decision threshold
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threshold and surrounded by voiced segments become 
voiced segments (voiced fusion). Then the isolated voiced 
segments shorter than a second threshold become unvoiced. 
This algorithm returns a series of voiced segments defined 
by a beginning time and a finishing time. A frame is voiced 
if at least half of its width is included in a voiced segment. 

To compute the F0 reference value for a voiced frame, a 
basic and easily reproducible algorithm is used. The EGG 
signal is windowed. On each window, normalized 
autocorrelation is computed, its first main lobe is removed 
and the abscissa of the highest peak is considered as the 
period of the fundamental for this frame. 
This algorithm returns a series of frames described by two 
values: the frame's time which is the middle instant of the 
EGG window studied, and the estimated F0 which is strictly 
positive if the frame is voiced and 0 else. 

3.1.3 Quality measures 
Let us define some notations.  
We note NS the number of speakers mixed in the speech 
signal. NR corresponds to the number of F0 values in each 
reference frames. NR is equal to NS because there are as 
much references values as speakers. NH is the number of F0 
hypothesis candidates given by a PEA per frame. NH is 
superior or equal to NR. We also note NF the total frame’s 
number. 
Let us note ∩ the intersection operator, U the union 
operator, Ω the cardinal operator and | the writing shortcut 
which signifies “such as”. 
We define R as the references frames set and Rt as the tth 
reference frame. Rt contains the set of F0 references values 
denoted Rx

t. Rx
t is the xth F0 reference value in the tth 

reference frame. The same kind of notation is applied to the 
hypotheses. H is the set of hypotheses frames. Ht is the tth 
hypotheses frame and Hy

t is the yth F0 hypothesis value in 
the tth hypotheses frame. The range of t, x and y are given in 
Eq.(1). 
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An unvoiced F0 candidate is set to zero. Else, it is strictly 
positive. We note VCR the set of voiced F0 references 
values and uVCR the set of unvoiced F0 references values. 
VCH is the set of voiced F0 hypotheses values and uVCH the 
set of unvoiced F0 hypotheses values. A mathematical 
formulation is given in Eq.(2). 
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Concerning the VuV decision, we consider a frame as 
voiced if at least one of its F0 values is strictly positive. 
Thus let us note (Rt>0) as a voiced references frame and 
(Ht>0) as a voiced hypotheses frame. We also note (Rt=0) 
an unvoiced references frame and (Ht=0) and unvoiced 
hypotheses frame. These definitions are illustrated in the 
Eq.(3). 
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VFR is defined as the set of voiced references frames and 
VFH is the set of voiced hypotheses frames. uVFR is the set 
of unvoiced references frames and uVFH the set of 
unvoiced hypotheses frames. 
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We define two series of quality measures: the first one 
deals with the VuV decision, and the second one deals with 
F0estimation. 
In the monopitch case, NR and NS are equaled to 1 and the 
number of references frames is the same than the number of 
F0 references values. 
The overvoiced frame rate (OVR) corresponds to the 
number of FA frames over the number of unvoiced 
references frames as explained in Eq.(5). The undervoiced 
frame rate (UVR) is the ratio between the FR frames 
number and the number of voiced references frames. It is 
given in Eq.(6). 
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The voiced decision agreement rate (Vok) is given in Eq.(7). 
It corresponds to the number of common voiced frames 
between the reference and the hypothesis over the number 
of voiced frames in the reference or the hypothesis. The 
unvoiced decision agreement rate (uVok) is described in 
Eq.(8). 

 
[ ]
[ ]HR

HR
ok VFVF

VFVFV
∪Ω
∩Ω=100  (7) 

 [ ]
[ ]HR

HR
ok VFVF

VFVFuV
∪Ω
∩Ω=100  (8) 

The F0 estimation quality measure involves a Gross Error 
Threshold (GET) fixed at 20%. A F0 reference value is said 
“in accordance” with a F0 hypothesis value whether their 
absolute relative distances is inferior to GET. Eq.(9) 
presents the mathematical formalization of this definition. 
We note the “in accordance” operator by the ≈ symbol. 

Fig 1. (a) speech signal (b) egg signal (c) filtered, 
saturated, half-wave rectified, normalized egg (black 

line) and temporal envelope (red line) (d) speech signal 
(black line) and voiced segment (red line) (e) envelope 

18-points histogram. The voicing threshold is 0.1. 
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The “in accordance” operator is extendable to frames. A 
reference frame is in accordance with a hypothesis frame if 
all the F0 references values are in accordance as showed in 
Eq.(10). 

 t
y

t
x

tt HRyxHR ≈∃∀⇔≈ ,  (10) 

The set of references frames in accordance is noted Rok and 
is described in Eq.(11). 

 { }tt
ok HRtR ≈=  (11) 

The “in accordance” rate corresponding to a recall rate is 
noted RER and is given by Eq.(12). It is the ratio between 
the number of “in accordance” reference frames and the 
number of common voiced frames between reference and 
hypothesis.  

 [ ]
[ ]HR
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The precision rate (PRR) corresponds to the number of “in 
accordance” reference frames over the number of voiced F0 
hypotheses values needed to put in accordance the 
reference frame. It is an indication of the PEA efficiency to 
find the rights F0 values in the first hypotheses candidates. 
PRR is explained in the Eq.(13) below. 
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In the case of PEAs which provide a single F0 hypothesis 
value per frame, PRR always equals to 100%. 
The Gross Error Rate (GER) is theF0 estimation accuracy 
indicator. It corresponds to the number of frames not “in 
accordance” over the total number of voiced references 
frames. We note Rko the set of reference frames not “in 
accordance”. The GER is given in Eq.(14). 
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An hypothesis F0 can be associated with several reference 
F0 values. Thus if some F0 reference values are equal in a 
same frame (crossing streams of F0), PEAs probably return 
a single hypothesis for the ensemble of equal F0 reference 
values. This multi-association allows the evaluation to deal 
with this problem. 
Once a hypothesis F0 value is associated to one or more 
reference F0 values, the hypothesis F0 value is locked and 
can not be associated with other reference F0 values. 
In the monopitch case, a F0 candidate, a frame and a stream 
are the same. Thus, it remains only four voicing quality 
measures. 

3.2 Monopitch evaluation results 

Four PEAs are evaluated and compared: YIN, SWIPE, 
PRAAT and PSH. YIN [1] provides an aperiodicity 
criterion which can be easily converted into a voicing 
feature between 0 and 1. It gives one hypothesis per frame. 
SWIPE [3] provides a voicing strength criterion between 0 
and 1 and also gives a single hypothesis per frame. PSH [4] 

provides a voicing strength which needs to be converted in 
a voicing feature between 0 and 1. It gives a tunable 
number of hypotheses and is adapted to the multipitch case. 
In the monopitch case, we fixed it at 1 like the others tested 
PEAs. PRAAT [2] provides an autocorrelation coefficient 
between 0 and 1 as voicing feature. In our series of 
algorithms, it is the only PEA with a post-processing. We 
tuned its parameters to remove this post-processing effect. 
All PEAs are tuned to provide a single F0 hypothesis value 
so in Table 1 the PRR column is removed because PRR is 
always equal to 100%. 
The particularities of each PEAs may lead to some small 
time misalignments between the references and the 
hypotheses so that a time alignment step is needed. It 
consists in a linear interpolation between the first before 
hypothesis value and the first after value. There is an 
undefined interpolation in the case of an unvoiced 
hypothesis frame and a voiced one. These frames are 
discarded from evaluation. As the reference F0 range differs 
from the hypothesis F0 range, all the F0 references out of the 
hypothesis F0 range are discarded from the evaluation.  
 

 EER Vok uVok OVR UVR RER GER
YIN 1.00 76.5 74.7 12.3 12.4 93.9 5.1 
PSH 1.01 85.6 85.7 6.3 6.3 95.5 4.2 
SWIPE 0.98 80.1 77.8 10.3 10.4 96.4 3.0 
PRAAT 1.00 62.2 60.6 17.1 16.7 94.1 3.7 

Table 2. Evaluation results on all the corpora. 

For a given PEA, all statistics are means obtained on the 
whole of the three corpora. The results given in table 2 do 
not aim at a classification of the algorithms tested. They 
show that the performance differences are not as large as 
they look in the original  publications, and they may 
encourage a detailed analysis of their respective strengths 
and weaknesses. The PRAAT settings that we adopted to 
remove the post-processing are clearly not adapted to this 
algorithm. 

4 Multipitch case 

In the multipitch case, several F0 streams need to be 
tracked simultaneously. This complicated task is usually 
performed by top-down approaches. These approaches use 
continuity hypotheses from one frame to the next or other 
general knowledge concerning the whole sequence. As 
there is also a lack of consensus in literature concerning 
these top-down processes, it is still difficult to evaluate 
their contributions to voicing and pitch estimation. That is 
why we are interested in a frame-to-frame evaluation 
without knowing more than the information extracted from 
the studied frame. We are aware of the fact that the better 
are the frame-level feature estimators, the simplest will the 
higher-level processes be. 

4.1 Evaluation method 

4.1.1 Database an reference annotations 
To build a 2-speakers mixture, two 60 dB energy 
normalized signals are simply added. The energy 
normalization method is the "Scale Intensity..." PRAAT 
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function. Then, the 2-speakers mixtures databases are built 
by adding several possible signals combinations. The 
mixtures are cut to the shortest component. Three types of 
mixtures are available: the female/female mixtures, the 
male/male mixtures and the male/female mixtures. K 
contains 1411 seconds of speech mixtures, B contains 
13693 seconds of speech mixtures, D contains 79869 
seconds of speech mixtures for a total of 26 hours 22 
minutes of speech mixtures artificially collected. 
The reference annotations in the multipitch case are directly 
based on the monopitch reference annotations. The 
annotations consist in a simple concatenation of the 
monopitch reference annotations. 

4.1.2 Quality measures 
All the notations and definitions posed in 3.1.3 are still 
available in this section. In the monopitch case, a speech 
signal contains only one speaker so that it was not 
necessary to introduce the notion of F0 stream. A F0 stream 
corresponds to the set of F0 values belonging to one speaker 
in a speech signal. In the multipitch case we have to 
introduce it due to the mixing of F0 streams. One defines SR 
the set of F0 streams contained in the signal and SR

S the 
particular F0 stream of the sth speaker. There are as many F0 
streams as speakers so there are NS F0 streams. An ideal 
PEAs should be able to reproduce the exact references 
annotations on his hypotheses output. 

 { }SN
RRR SSS ...1=  and { }FN

SS
S
R RRS ...1=  (13) 

An F0 hypothesis value should be associated with several 
reference F0 values. Thus if some F0 reference values are 
equal in a same frame (crossing streams of F0), PEAs 
probably return a single hypothesis for the ensemble of 
equals F0 reference values. This multi-association allows 
the evaluation to deal with this problem. Symmetrically 
once a F0 hypothesis value is associated to one or more F0 
reference values, the hypothesis F0 value is locked and can 
not be associated anymore. 
With the VuV definition adopted in 3.1.3, the VuV decision 
evaluation criteria remain the same in the multipitch case 
than in the monopitch case. One frame is voiced if one of 
her value is strictly positive. Mathematical definitions of 
Vok, uVok, OVR an UVR remain unchanged. Nevertheless 
as the reference change, a new adequate VuV decision 
threshold has to be computed.  
There is an evolution in the F0 estimation evaluation 
criteria. Contrary to the monopitch case where a F0 
reference value is the same than a frame reference, in the 
multipitch case we can clearly distinguish between them 
and any simplification is no longer available. 
The “in accordance” F0 references values rate RECR given 
in Eq.(15) is the number of F0 references values in 
accordance over the number of voiced F0 reference values 
(VCR defined in Eq.(2)). Eq.(14) provides the definition of 
RCok which is the set of F0 reference values in accordance. 
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One can define the same rate for frames. We call REFR the 
“in accordance” reference frames rate. It corresponds to the 
number of reference frames in accordance over the number 

of voiced references frames. It is a first feature to quantify a 
PEA quality in reconstructing F0 streams. Indeed higher is 
REFR higher is the number of frames where all F0 
references values are associated with an F0 hypothesis 
value and better may be the F0 streams tracking. Eq.(16) 
and (17) formalize this feature. 
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The precision rate on F0 values explained by Eq.(18) is the 
same than in Eq.(13) except that here it may exists more 
than one F0 reference values. 
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5 Conclusions 

In this paper we provided an evaluation methodology to 
compare PEAs not only on their F0 estimation efficiency 
but also on the VuV decision which is a PEA step at least as 
important as the F0 estimation. We illustrated this view in 
the monopitch case, by using several PEAs on a set of 3 
different databases including the EGG signals, for which an 
automatic annotation protocol has been worked out. The 
methodology has been elaborated to extend easily to the 
multipitch case.  
This work reinforces the idea that F0 estimation and VuV 
decision are deeply related, in complex ways. Voicing was 
considered here as a two-state, binary problem. In the future 
it may become necessary to treat separately two notions of 
voicing, one at the signal level, essentially continuous, and 
the other, binary, incorporating some upper-level perceptive 
and linguistic considerations. 
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