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In this paper, we propose new acoustic computerized tomography (A-CT) methods based on Radon transform. In 
these methods, temperature distribution in rectangular space is measured. Temperature distribution measure-
ments are used in various fields, such as, air-conditioning control in offices, temperature control in greenhouses, 
and many of their measured spaces are rectangular. Ordinary A-CT method conducts pseudo linear scanning and 
rotational scanning by arranging acoustic transducers at equal intervals on a circle. However, it is difficult to 
take circular arrangements of the transducers in the rectangular spaces. Thus, we adopt to arrange the transducers 
on a rectangle. Therefore, a problem that projection data could not be obtained at equal angular intervals occurs. 
To solve this problem, we propose two methods. One is that the projection data of unequal angular intervals are 
superposed with weighting with respect to its angular intervals. The other is that the projection data of equal an-
gular intervals are obtained from the projection data of unequal angular intervals by two-dimensional interpola-
tion. We confirm the usefulness of proposed methods by numerical simulation. 

1 Introduction

Temperature distribution measurement is used in various 
fields. Especially, this is important in greenhouses for tem-
perature control [1, 2]. Thus, temperature distribution mea-
surement methods are researched and proposed. 

Among these, acoustic computerized tomography (A-CT) 
method [3, 4] is studied and applied to temperature distribu-
tion measurement [5-9]. In many cases, acoustic transduc-
ers are located at equal intervals along circumference of 
measurement space. Times of flight (TOFs) of sound waves 
between the transducers are measured. Switching the 
speaker and microphones, pseudo linear scanning and rota-
tional scanning are conducted and projection data are ob-
tained by interpolation to obtain more dense projection data. 
By use of filtered back projection (FBP) method [10], reci-
procal of sound velocity is reconstructed by the projection 
data, and converted into temperature distribution. The A-
CT method has several advantages, including noncontact 
measurement, the low space occupation, and the measure-
ment capability of large-scale space. 

However as mentioned before, many of the examples are 
used in rectangular spaces. It is difficult to take circular 
arrangements of the transducers in the rectangular spaces. 
Additionally, the advantage of the low space occupation is 
lost. In the rectangular space, it is efficient to arrange the 
transducers on a rectangle. However, arranging the trans-
ducers on a rectangle causes two problems. One is that pro-
jection data could not be obtained at equal angular intervals. 
Inverse transform of Radon transform [11] is essentially 
integral of rotational direction. However, the projection 
data of unequal angular intervals could not be directly ad-
dressed in order to perform inverse transform. The other is 
that the numbers of parallel sound paths are greatly differ-
ent according to the projection angle. The interpolation by 
few parallel sound paths causes deterioration of recon-
structed result. 

To solve the former problem, the authors targeted nonuni-
form sampling theorem [12] and proposed weighted super-
position method [9]. The latter problem is tried to solve to 
set threshold value of the sound paths. To set the threshold 
value, projection data interpolated by few parallel sound 
paths and its rotational angles are not used for reconstruc-
tion. Although these methods were useful, some sound 
paths could not be used for reconstruction. Moreover, it is 
difficult to determine the proper threshold value. 

In this paper, we propose a new method. The projection 
data are ordinarily interpolated in one dimension which is r-

axis. In the newly proposed method, projection data of 
equal angular intervals are obtained by interpolating the 
projection data of unequal angular intervals in two-
dimensional surface which are r-axis and rotational angle .
By the two-dimensional interpolation, the information of all 
sound paths are effectively used for reconstruction and no 
threshold values are necessary. 

2 Principles 

2.1 Weighted back-projection for  un-
equal angular intervals 

Fig.1 illustrates principle of A-CT in a rectangular space. 
The transducers are assumed to be point sources. Twenty 
four transducers are located at equal intervals along the 
circumference of the rectangular space. Aspect ratio of the 
rectangular space is two. ),( yxc  is sound velocity distribu-

tion in the rectangular space. Sound velocity outside of the 
rectangular space is assumed to be 

0c . ),( yxc  and 
0c  are 

sound velocity in air. An origin of x-y coordinate is located 
at the center of the rectangular space. In addition, r-s coor-
dinate is assumed, which is rotated  from the x-y coordi- 
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Fig.1 Principle of A-CT in a rectangular space. 
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Fig.2 Difference of number of parallel sound paths accord-
ing to the rotational angle of r-axis . (a)  equals 45 deg. 

(b)  equals about 78.7 deg. 

nate. 

Switching the speaker and microphones, pseudo linear 
scanning and rotational scanning of Radon transform are 
conducted and TOFs between the transducers are measured. 
Assuming virtual speaker array and microphone array 
which are parallel to the r axis, projection data ),(rp  is 

obtained by converting the TOFs of sound paths parallel to 
s axis into TOFs between the virtual arrays. Interpolating 
the projection data, denser projection data are obtained. 

However, two problems occur. One is that the numbers of 
parallel sound paths are greatly different according to , as 
shown in Fig.2. Fig.2(a) shows the example that  is equal 
to 45 deg. There are eleven parallel sound paths. However, 
in the case that  is equal to about 78.7 deg, there are only 
two parallel sound paths, as shown in Fig.2(b). Use of the 
projection data interpolated by few parallel sound paths 
causes deterioration of reconstructed result. To solve this 
problem, threshold value of parallel sound paths is set. Set-
ting the threshold value, projection data interpolated by the 
number that is smaller than the threshold value and its an- 
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Fig.3 Rotational angles of r-axis when the threshold value 
is five. 

gles of rotational scanning when the threshold value is five. 
The maximum angular interval is about 14.4 deg, and the 
minimum angular interval is about 7.1 deg. Thus, dense 
parts and sparse parts of the rotational direction, at which 
projection data are obtained, exist. Moreover, inverse trans-
form of Radon transform is essentially integral of rotational 
direction. However, the projection data of unequal angular 
intervals could not be directly addressed in order to perform 
inverse transform in a summation form. 

To solve this problem, we target nonuniform sampling 
theorem and propose weighted back-projection method. 
The weights are calculated depending on angular intervals. 
Rotational angles are set as 

N21 ,...,,...,, n  (deg). 
1
 is 

greater than 0 deg, and N  is less than 180 deg. Each angu-

lar interval n  is calculated using 

1nnn .     (1) 

To calculate 
1
,

0
 is required. Because the transducers 

are located at equal intervals, the process of rotational an-
gles becomes symmetry, as shown in Fig. 3. Thus, 

0
 is set 

as following equation. 

180N0
     (2) 

In addition, the maximum angular interval is set as 
max

.

The weight nw  is calculated as following equation. 

max

1nn
nw      (3) 

Using the weights, the influence of the thick parts becomes 
light and that of the rough part becomes heavy. Reciprocal 
of sound velocity distribution ),( yxf  is calculated by the 

projection data of unequal angular intervals ),( nrp  with 

nw  by the following equations. 

N

n
n

N

n
nnnn

w

yxQw
yxf

1

1

),sincos(

),(
  (4) 

drjGrQ )2exp()(),(   (5) 
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Fig.4 Sound paths in a rectangular space by twenty four 
acoustic transducers. (a) The threshold value is zero. (b) 

The threshold value is five.  

drrjrpG n )2exp(),()(    (6) 

These are based on filtered back projection (FBP) method. 

Converting sound velocity into temperature, temperature 
distribution is reconstructed from ),( yxf  by following 

equation where c is sound velocity and T is temperature in 
air.

15.273
32.331

15.273 2

2
cT     (7) 

However, these methods have two problems. One is that it 
is difficult to decide the best effective threshold value for 
reconstruction. The other is that unused sound paths for 
reconstruction accrue. Fig.4(a) illustrates all sound paths. 
The number of the sound paths is 184. Fig.4(b) illustrates 
the sound paths for reconstruction when the threshold value 
is five. There are 116 sound paths. Thus, 68 sound paths are 
not used for reconstruction even though they are available. 

2.2 Two-dimensional interpolation in r-
surface

To solve the two problems mentioned above, we propose 
another method. The weighted back-projection interpolates 
the projection data at r-axis, as shown in Fig.1. This is one-
dimensional interpolation. The unused sound paths problem 
is attributable to this interpolation. Thus, the new method 
interpolates the projection data in two-dimensional r-  sur-
face. Interpolating the projection data in r-  surface, the 
threshold value is not required and all sound paths are used 
for reconstruction. Moreover, the projection data of unequal 
angular intervals are converted to equal angular intervals 
projection data. 

Fig.5 illustrates principle of the two-dimensional interpola 
tion for A-CT method. The projection data are mapped to r- 
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Fig.5 Two-dimensional interpolation of unequal angular 
intervals projection data at r-  surface. (a) Sparse r-  sur-
face mapped from projection data. (b) Dense r-  surface 

interpolated from the rough r-  surface. 

 surface, as shown in Fig.5(a). Interpolating the r-  surface, 
as shown in Fig.5(b), dense r-  surface is obtained. In this 
paper, we use cubic spline interpolation. From the dense r-
surface, projection data of equal angular are obtained. 

3 Numerical Simulations and Discus-
sions

By numerical simulations, we confirm usefulness of pro-
posed methods. Fig.6 presents original and reconstructed 
temperature distributions. Twenty four acoustic transducers 
are assumed to be located at equal intervals along the cir-
cumference of a rectangular space, as shown in Fig.6(a). 
The size of the space is 4.0 × 8.0 m2, and the interval is 1.0 
m. All calculations are performed on the 41 × 81 grid with a 
size of 0.1 × 0.1 m2.

Fig.6(a) shows the original distribution. This distribution is 
given by Gaussian function whose 1/e width is 2.0 m. The 
base value of the distribution is 15.0 deg C, and the peak 
value of the distribution is 18.0 deg C and located at (1.0 m, 
0.0 m). In the simulation, TOFs are calculated from this 
distribution integrating the reciprocal of sound velocity 
along its sound paths. 

Fig.6(b) shows the distribution reconstructed from projec-
tion data of 45 deg intervals with ordinarily A-CT method. 
The peak value is about 18.20 deg C and located at (1.0 m, 
0.0 m). The shape of the distribution is like octagon be-
cause the ordinary A-CT method uses only four projection 
data. 

Fig.6(c) shows the distribution reconstructed by the 
weighted back-projection whose threshold value is five.  
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Fig.6 Original and reconstructed temperature distributions. (a) Original distribution. (b) Reconstructed by ordinary A-CT 
method using projection data of 45 deg intervals. (c) Reconstructed by the weighted superposition A-CT method whose 

threshold value is five. (d) Reconstructed by the two-dimensional interpolation A-CT method. 
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Fig.7 Error of reconstructed distribution to the original distribution (x,y). 
(b), (c), and (d) correspond to those of Fig.6, respectively. 

The peak value is about 17.86 deg C and located at (1.0 m, 
0.0 m). Fig.6(d) shows the distribution reconstructed by the 
two-dimensional interpolation in A-CT method. 180 pro-
jetion data whose equal angular interval is 1.0 deg are ob-
tained by the two-dimensional interpolation because twenty 
four acoustic transducers are used. The peak value is about 
17.82 deg C and located at (1.1 m, 0.0 m).  

Fig.7 indicates error of reconstructed temperature distribu-
tion to the original distribution (x,y) which is calculated 
using 

),(),(ˆ),( yxfyxfyx .    (8) 

),(ˆ yxf  is the reconstructed temperature distribution and 

),( yxf  is the original temperature distribution. In Fig.7, (b), 

(c), and (d) correspond to those of Fig.6, respectively. RMS 
error of Fig.7(b) is about 0.236 deg C. The RMS error 

RMS

is calculated by the following equation. 

x y

yx 2
RMS ),(

8141

1    (9) 

Fig.7(b) shows that (x,y) in the vicinity of the circumfe-
rence of the rectangular space are large. Moreover, radiated 
artifacts appear. These are attributable to that only four pro-
jection data are used for reconstruction. 

The RMS error of Fig.7(c) is about 0.078 deg C, and that of 
Fig.7(d) is about 0.066 deg C. Comparing Fig.7(d) with 
Fig.7(c), the RMS error of Fig.7(d) is smaller than that of 
Fig.7(c). (x,y) in the vicinity of the location of Gaussian 
function decrease. In addition, the shape of the Fig.6(d) is 
more similar to that of the original distribution than that of 
Fig.6(c). These advantages are owing to the number of pro-
jection data. Setting the threshold value as five, sixteen pro-
jection data are available for the weighted back-projection. 

On the other hand, although 180 projection data are used 
for the two-dimensional interpolation, the error becomes 
greater about the peak value in Fig.6(d) than that in Fig.6(c). 
This is attributable to the two-dimensional interpolation, as 
shown in Fig.8. Fig.8(a) plots projection data mapped to r-
surface at  axis. Because the original distribution is given 
by Gaussian function, peak of the projection data is con-
stant in principle. This constant peak is shown as the broken 
lines in Fig.8. Fig.8(b) shows interpolated projection data.  
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Fig.8 Two dimensional interpolation projection data at 
axis. (a) Measured data. (b) Interpolated data. 

The peaks of the projection data are not constant. Thus, the 
peak value of Fig.8(d) becomes lower. 

4 Conclusions

By the numerical simulation, we confirm the usefulness of 
the proposed methods, weighed back-projection method 
and two-dimensional interpolation in A-CT method. Com-
paring the distribution reconstructed by the latter method 
with that by the former method, the distribution approaches 
to the original shape and RMS error decreases. However, 
the peak value error of the distribution becomes large. It is 
ascertained that this problem is attributable to the two-
dimensional interpolation. 

As future works, other two-dimensional interpolation me-
thods will be tried. Additionally, experimental verifications 
will be also scheduled. 
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