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This work aims to detect vowel place as part of a knowledge-based speech recognition system. Vowel place was 
classified into 6 groups based on tongue advancement [Front/Back] and height [High/Mid/Low]. Experiments 
were performed using 660 /hVd/ utterance data from Hillenbrand [J. Acoust. Soc. Am. 97, 3099-3111] and 6600 
TIMIT vowels. Features used include fundamental frequency (F0) and formant value (F1~F3), where formant 
measurements were classified into separate groups using F0 measurements. The nearest class was found using a 
simple Mahalanobis distance measure, and yielded a 92.0% classification rate for the /hVd/ data. The results for 
the TIMIT data were 65.7%, and error analysis with regard to adjacent segment manner and place was carried 
out to observe the effects of coarticulation, which was not observed in the /hVd/ data. 

 

1 Introduction 

A knowledge-based speech recognition procedure can be 
considered as a type of distinctive feature based speech 
recognition, which has been considered by Stevens [10] and 
by Espy-Wilson [4] as an event-based speech recognition. 
In a knowledge-based approach, the primary purpose is 
modelling the human perception process. Current 
statistically based recognition methods face performance 
degradation under mismatched conditions, and a 
knowledge-based approach offers an alternative attempt. 
Because knowledge sources are made in a directed, 
meaningful manner, if they can be made to work well, they 
should be more robust against variability. From this point 
of view, the goal of this work is to detect vowel place as 
part of a knowledge-based speech recognition system. 
Numerous efforts have been made on analyse of vowels. 
Peterson and Barney (PB) [8] studied the acoustic 
characteristics of vowels using formant frequencies 
(F1~F3) and fundamental frequency (F0); also, Hillenbrand 
et al [2] extended the vowel acoustics in a similar way. In 
addition, Stevens [9] examined the acoustic correlation 
between formant frequency and vocal tract shape using 
resonator models. These results show vocal tract shape due 
to tongue movements are strongly related to vowel 
production and perception. Also in the past, Meng et al [5] 
attempted to classify vowels using distinctive features. 
Although Meng reported good performance, the study used 
many spectral and cepstral coefficients in their of 
knowledge-based approach. 
The purpose of this study, then, is to detect vowel place 
using primary acoustic features such as formant and 
fundamental frequency. Vowel place is represented using 
the following distinctive features: [high, low, back]  , and 
minimum distance measure was used to detect vowel place 
in 6600 vowels extracted from the TIMIT corpus and 
Hillenbrand’s 660 /hVd/ data [2].  
This paper will report preliminary work on vowel place 
detection using formant and fundamental frequencies. 
Firstly, we will describe the experimental methodology in 
detail. We will then present the results of vowel place 
detection and discuss the results. Finally, we will 
summarize the paper and consider future work. 

2 Experimental methodology 

2.1 Test signals 

Two different types of databases were used for these 
experiments. The first test signals consisted of 660 /hVd/ 
utterances recorded by Hillenbrand et al [2]. And 6600 
vowels from the TIMIT corpus were also used in this 
experiment. The vowels chosen for these experiments are 
11 monophthongs in American English such as 

 
and….…...The talker of /hVd/ data consist of 30 men and 
30 women, so each vowel has 30 signals 
( 30 2 11 660× × = ). 6600 vowels are randomly selected 
from the TIMIT corpus equally from each gender, and each 
vowel has 150 male data and 150 female data 
( 300 2 11 6600× × = ). The diphthongs and schwa are 
excluded here.  

2.2 Acoustic measurements 

The formant tracking methods for F1 ~ F3  were similar to 
the Entropic ESPS formant program, spaced every 10 ms, 
with linear predictive coding (LPC) resonances to find 
formant frequencies, and include dynamic programming. 
The formant frequencies are found at 50% of vowel 
duration which was found from the labels. 
Fundamental-frequency (F0) was measured using 
conventional autocorrelation method every 10 ms using 25 
ms Hamming window.   It was also sampled at 50% of 
vowel duration. 
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Fig. 1 Vowel place detection process. The input signal is 

divided into two groups by F0. 
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2.3 Feature analysis 

The features chosen to detect vowel place are 
[  high]± , [  low]±  and [  back]± , which are tongue body 
features [10]. Then, for each tongue body feature, the 
tokens are divided into two classes – [  feature]+  and 
[  feature]− . In this paper, every vowel is classified into one 
of 6 groups depending on tongue body features. 
The vocal tract shape can be approximated roughly as a 
concatenation of tubes. The articulator movement, which 
can be modeled as concatenated tubes, lead to formant-
frequency changes resulting from perturbations (local 
constrictions) of a tube resonator. The frequency of F1 is 
inversely related to tongue height (e.g., high vowels have a 
low F1 frequency), and the frequency of F2 is related to 
tongue advancement (e.g., front vowels have high F2 
frequency).  
The [  high,  low]± ± features are related to tongue height. 
[  high, - low]+ , [  high, - low]− and [  high, + low]− represent 
vowel height that are pronounced with  high, mid and back 
tongue position, respectively. Fig. 2 shows the Gaussian 
distribution of F1 of high/mid/low vowels for TIMIT data 
and /hVd/ data. As we expected, Fig. 2 representing tongue 
height (high/mid/low) is inversely related to F1.  

Tongue advancement is connected to [  back]±  features. 
The front/back vowel, which are pronounced with 
front/back tongue position, is represented as [  back]−  and 
[  back]+ . Fig. 3 shows the Gaussian distribution of F2 of 
front/back vowels for TIMIT data and /hVd/ data. As we 
expected, tongue advancement (front/back) is related to F2. 
The feature values for these vowels are summarized in 
Table 1. 
 

 
 
 

 

2.4 Classification strategy 

The classification strategy for the vowel place is divided 
into two steps: grouping and vowel place classification as 
shown in Fig.1. The grouping process separates input 
signals into two sets depending on F0. This process can 
compensate the differences of formant frequency due to the 
vocal tract length between male and female. The nearest 
class was found using a simple Mahalanobis distance 
measure in the vowel place classification process with F1 
and F2. The Mahalanobis distance is defined as: 

                    1( ) ( ) ( )T

MD f f fμ μ−= − Σ −  (1) 

where f is a formant vector, ( 1, 2)f F F= , μ is formant 

mean, 1 2( , )F Fμ μ μ= , and covariance matrix Σ for a vector 
f . 

In addition, retroflexed vowel processing is performed 
using F3. Each of reference means and covariance matrices 
was calculated by training set of database.  

3 Result 

 

Fig. 3 Gaussian distribution of F2 of front/back vowels for 
TIMIT data and /hVd/ data. 

Table 1 The distinctive feature set of 11 vowels. 

Fig. 2 Gaussian distribution of F1 of high/mid/low vowels 
for TIMIT data and /hVd/ data 

Fig. 4 The overall detection results for TIMIT data and 
/hVd/ data. 
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The vowel place detector is evaluated both for /hVd/ data 
and TIMIT data. The detection rate was determined by 
comparing the output of the detector with the labeled data. 
The overall detection results for the databases are 
summarized in Fig. 4. 
The detection results for tongue height are 76.2% and 
93.0% in TIMIT data and /hVd/ data, respectively. The 
tongue height, which can be represented 
as [  high,  low]± ± , are determined by F1, and it is 
classified into three classes: high/mid/low. Table 2 shows 
confusion matrix of tongue height. Most of the errors are 
found between high/low and mid with a few exceptions.   
The detection results for tongue advancement are 85.3% 
and 99.0% in TIMIT data and /hVd/ data, respectively. The 
tongue advancement, which can be represented as [  back]± , 
are determined by F2, and it is classified into two classes: 
front/back. Table 3 shows confusion matrix of tongue 
advancement. By comparing the results for tongue height 
and advancement, [  back]± features show better 
performance compared to [  high,  low]± ±  features. 

The overall detection results for vowel place are 65.7% and 
92.0% in TIMIT and /hVd/ database, respectively. Every 
vowel is classified into six different classes based upon 
vowel place – High/Front, High/Back, Mid/Front, 
Mid/Back, Low/Front, and Low/Back. Table 4 and table 5 
show confusion matrix of vowel place for TIMIT data and 
/hVd/ data, respectively. With a few exceptions, most of 
errors are made between adjacent classes.  
 

 

 

4 Discussion 

To summarize briefly, the main purpose of this study was to 
detect vowel place using formant frequency and 
fundamental frequency as a part of a knowledge-based 
speech recognition system. The nearest class was found 
using a simple Mahalanobis distance measure, and yielded 
a 92.0% classification rate for the /hVd/ data from 
Hillenbrand. The results for the TIMIT data were 65.7%.  
Our research was partly motivated by the use of distinctive 
features for knowledge-based approach. From this point of 
view, acoustic characteristic that we have chosen are 
formant frequency and fundamental frequency. These 
features are no guarantee of detection performance, but they 
are intuitively reasonable and directly measurable. 
Fig 2 shows that the overall detection rate of TIMIT data is 
worse than /hVd/ data; it is mainly due to coarticulation 
effect in formant pattern. Hillenbrand have already pointed 
out that vowel formant patterns are strongly related to 
phonetic environment [3].  Since /hVd/ data was recorded 
h-V-d syllables, we can not observe coarticulation effects in 
formant pattern. TIMIT vowels, however, was extracted 
from various phonetic environment. Therefore, formant 
frequency was affected by adjacent phonetic environment. 
This result suggests that consonant environment on vowel 
is also significant cues to detect vowel place.  
Important areas for further study will comprise three issues. 
First, phonetic environment on vowel will be considered to 
overcome the formant pattern changes due to coarticulation 
effect. Second, the temporal movements of formant 
frequency will give more information, however one point 
sampled at 50% of vowel was used in this paper. 
Furthermore, the speaker normalization that can 
compensate the inter-speaker variability can be applied, 
even if fundamental frequency was used in this paper. This 
work has shown that use of acoustic attributes for vowel 
place detection is feasible. Although previous study [6] 
have shown that vowel detection with spectral coefficients, 
this paper limits to detecting vowel place with acoustic 
parameters. With a modification of the detection strategy 
using contextual information it would be expected that 
performance can be improved. 
 

Table 4 The confusion matrix of vowel place of TIMIT data

(a)                             (b) 

Table 3 The confusion matrix of tongue 
advancement features of (a) TIMIT data 

and  (b) /hVd/ data. 

(a)                                     (b) 

Table 2 The confusion matrix of tongue height 
features of (a) TIMIT data and (b) /hVd/ data. 

Table 5 The confusion matrix of vowel place of /hVd/ data 
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