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The results of a theoretical study of the phonon spectrum of crystal structures with quantum dots are reported. 
The model proposed takes into account the real crystal structure of both the quantum dots and surrounding 
matrix. A comparison is made for the numerically calculated and experimental Raman spectrum of a multilayer 
Ge/Si QD structure, which shows a qualitative correlation between the theory and experiment.  

1 Introduction 

The crystal structures containing quantum dots (QD) or 
quantum wires have been studied by spectroscopic methods 
during more then ten years. Significant efforts are directed 
to understand the spectral features in dependence on the 
size of QDs imbedded into a matrix, their concentration and 
ordering. 
One of the first works on this problem was connected with 
CdSe nanospheres [1] which were considered in the 
framework of classical models: semiconductor 
homogenious nanosphere of radius R having a dielectric 
constant ε  and imbedded into matrix with dielectric 
constant dε . The following steps were connected with the 
study of Raman scattering (RS) by self-assembled quantum 
dots (QD) based on more real models. First RS study was 
limited by optical phonon frequency range [2, 3] but the 
following intensive investigations were related to the RS on 
acoustical phonons. In the experiments the periodic 
oscillations were observed (see for example [4-6]) and 
attributed to the interaction between confined electronic 
states and standing acoustic waves due to reflection at the 
sample surface. Model calculations were made by using the 
deformation potential interaction between acoustical 
phonons and electronic states confined within the QD. The 
calculations allowed authors of [6] to make conclusion that 
oscillations in RS spectrum are related to interference 
between the QD layers. However, such a conclusion seems 
to be very surprising because for the interference to occur, 
it is necessary that path difference d  for two interacting 
waves must have a value comparable to the probing 
wavelength )(, λλ ≥d . In fact, the distance between 
two QD layers is much smaller ( λ1.0≈d ). In accordance 
to model proposed in [5,6], QD’s are homogeneous disks 
including the in-plane and vertical confinement. Acoustic 
phonons in each layer have appropriate velocities and 
densities, SiSiQDQD vv ρρ ,,, , (the details of model are 
presented in [7]). According to [7], the electronic 
confinement leads to the loss of translational invariance and 
RS by acoustic phonons becomes allowed. 
Really, authors of this and other similar models neglect the 
fact that QD has 30-50 nm in lateral and 3-15 nm in vertical 
size. Taking into account that Si and Ge crystal lattice 
constant is near ~0.5 nm, QD contains many crystal unit 
cells. It allows, if one neglects Si/Ge lattice mismatch of 
about 4%, to build the new unit cell containing Ge QD and 
part of surrounding Si matrix, as schematically shown in 
Fig.1. The lattice parameters of the new cell are obtained 
from the original (old) ones as follows : 

},,{, zyx LLLLLaa =→ .  

 
Fig. 1. Schematic of the new unit cell in the QD structure. 

Lx is a number of the old unit cells in a new unit cell; L0x is 
a number of the old unit cells of QD. 

Such model with “new crystal structure” allows analysis of 
the RS features in framework of micro-approach, using 
only traditional parameters of real crystals (phonon 
frequency, mass of atoms, lattice constant etc.). It is 
obvious that a number of optical phonon branches will 
increase because the new reciprocal lattice vector, Lb , is 
smaller then the former one, b, 
( Labab L /2/2 ππ =→= ). Each primary optical branch 
is transformed into several optical and each acoustical 
branch is transformed into several optical and one 
acoustical branches (sometimes such transformation is 
called as folding of phonon branch). Therefore the structure 
of low frequency bands will result from the appearance of 
many new optical phonons but not from of the interference 
effect on RS. 

2 Short theory 

2.1 Energy of crystal 

Energy of the crystal consists of the energy of electron 
system, elH , energy of vibrations, phH , and energy of 

electron-phonon interaction phelH = . We will consider in 
this article the processes of non-resonance Raman 
scattering, therefore it is sufficient to take into 
consideration only the phonon part of the Hamiltonian. 
Within a harmonic approximation, the energy of lattice 
vibrations can be written in traditional form: 
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In Eq.(1) k
nu α,~  characterizes the deviation of the position of 

atom k (with mass km ) in unit cell n along axis 

},,{ zyx=α  from equilibrium position; k
nu α,~&  is the 

corresponding velocity. 
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We will consider the crystal with QDs as schematically 
shown in Fig. 1. Note that the model developed for QD’s 
can be easily adapted for the case of quantum wires by 
setting xx LL =0  or quantum wells by setting xx LL =0 , 

yy LL =0 . The part of unit cells, included in the new unit 
cell, can be occupied by atoms of one type of crystal (for 
example, Ge, GaAs etc.) and another one is occupied by 
atoms of other crystal (Si, AlAs etc.). Therefore the both 
sums in the Eq.(1) can be transformed to unite unit cells 
only with atoms of one type of crystal and rest is terms of 
mixed type. The procedure of such re-summation is to some 
degree cumbersome, especially for the second term in 
Eq.(1). As we neglect QD/matrix lattice mismatch, we can 
introduce a new great unit cell with a constant Laa → . 
Then the position of unit cells will be characterized by two 
indeces },{~ nNn =  and small unit cell should be marked 
by index 0, if it belongs to QD, and index 1, if it belongs to 
matrix, i.e. 10, nnn → , but for great unit cell which 
contain only one type material 10 nn +  = n . Beside it 
would be convenient to use in all analytical expressions the 
parameters of great init cell ( },,{ zyx LLLL = ) and to 
make the summation either on great unit cell or only on unit 
cells connected with QD to avoid the complex geometrical 
form connected with surrounding matrix. Therefore the 
Eq.(1) can be rewritten in other form (it is shown below for 
kinetical part of energy) to pick out the terms corresponding 
to energy of the full crystalconsisting either only of QD 
material or only of matrix material and the rest terms are 
perturbation ones (the full number of unit cells in crystal is 

NLN =~
). 
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where )0(T  and )1(T  are kinetic energy of vibrations of the 
whole crystal which consists of the material of quantum 
dots and matrix, respectively.  
The transformation of terms describing the potential energy 
is more complex. The full energy can be then presented as 
follows 

}{ 11 TTVTE Δ−=+= + ++Δ+−+ 00000 ]}[{ VTTT

])[( 011011000011 VVVVVV Δ+Δ+Δ++−++ δ . (3) 

In relations (2), (3) the energy of crystal containing a QD is 
presented as a sum of energies of two (virtual) crystals  and 
interaction energy between their vibrations. It should be 
noted that according to Eqs.(2), (3) the terms 00T  and 

00V are really excluded from general expression (3) but we 
conserve them to make the following consideration more 
consistent. 

2.2 Secondary quantization and 
Hamiltonian of crystal 

It is convenient to make the following analysis by using the 
secondary quantization procedure. 
Hamiltonian of crystal can be obtained from the formulae 
for energy, Eqs.(2, 3), by expression of  values k

nu α  by 

creation-annihilation phonon operators, sqsq bb ,, ,+ , of 
branch s and wave vector q. Shifts of atoms and their 

velocities are real values k
n

k
n uu ∗= αα ,, , k

n
k
n uu ∗= αα ,, &&  and 

the corresponding operators are hermitian and equal 
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where )(,
, qe kj

s α and M  are amplitude of vibration and mass 
of atoms in unit cells respectively. We also will number the 
phonon branches by indexes 10 , ss  for QD and matrix 
respectively.  
In Eqs.(4a-c) the wave vector q is changed in the broad 
region aqa // ππ ≤≤− , where a is a lattice constant of 
initial lattice. For new great unit cell the lattice constant 
is LaaL = , therefore the wave vector is changed in some 
other limits, LaqLa /~/ ππ ≤≤− , and both  wave 
vectors are connected by relation  

,
22

,2,,~ LgL
La

bbgbqbq gg ≤≤−==+= π
 

,...2,1,0 ±±=g ,      (6) 

where b is a new reciprocal lattice vector and the cyclic 
Born-Karman conditions for crystal with QD are the same: 

1)2exp()])(/2(exp[)exp( === NiNaLLaiNib xx ππ . 

 
Hamiltonian of crystal with QD in the secondary 
quantization representation is given by group of Eqs. (7)  
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It is seen from Hamiltonian that wave vector 
LaqLa /~/ ππ ≤≤−  is conserved in this quantum 

structure. 

2.3 Equations for Green functions 

Intensity of light scattering is expressed by Fourier 
component of retarded Green function (GF) on the phonon 
operators sqg ,~+ϕ  ( we will use the operators αϕ ,kp+ where 

},{ 10 ααα = characterizes the phonon branch of both the 
QD and the matrix one). The GF is given by expression  

>><< +
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)(tΘ  is a step function; [a, b] is a commutator of two 
operators; <….> statistical average of operators; 

 )exp()exp()( ,, iHtiHtt kpkp −= ++ αα ϕϕ  

System of equations for Green functions is following 
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After Fourier transformation and inserting (10b) into (10a) 
we obtain the following system  
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For simplicity we will consider the case when both (virtual) 
crystals consisting of the QD and the matrix material have 
only one (optical or acoustical) longitudinal vibration; that 
means 00 βα =  , 11 βα =  and summation on 0β  and 1β  
disappears in Eq.(11, 12). Beside let us suppose that 
constants characterizing the interaction between vibrations 

is independent on the wave vector, i.e. βαβα ,,
, )( VLV pgk =  

and introduce the 
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The relations (11) and (12) give rise to the expressions for 
Fourier components of Green functions expressed by 
crystal parameters and frequency. The corresponding 
relations can be written as  

=>><< +
++ ωαα ϕϕ )0();( ','', 0 kpkp t  
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3 Intensity of light Raman scattering 

We will consider that only one longitudinal branch for each 
crystal there is 0α  and 1α   

To simplify the formulae for Raman scattering intensity we 
will neglect the dependence on wave vector in the tensor of 

susceptibility, supposing =+ )(~
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s
kk
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Then intensity of Raman scattering can be described by 
expression 
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a). If constants of interaction 00 ,ααV , 10 ,ααV , 11 ,ααV , 
between phonon branches are small the Eq.(17) reduces to 
more simple one because intensity is described in this case 
by two following terms   
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It is important to note that obtained expressions for 
intensity of light scattering are permitted for description of 
processes both with participation of the optical phonons and 
the acoustical ones. Details of scattering depend on the 
character of dispersion of phonon branches, Qj ,αω .  

4 Numerical model calculations. 

The fulfilled numerical calculations showed a qualitative 
correlation with the experimental results. As an example in 
Fig. 2 are shown our experimental and calculated Raman 
spectra for a five-layer Si/GeSi QD structure. In the 
calculation a common sinusoidal dispersion law was used 
for the acoustical phonon branch. This may be one of the 
reasons for the observed deviation of the calculated 
spectrum from the experimental one. Another important 
factor that can affect the shape of the theoretical spectrum 
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can be a more correct choice of the constant describing 
interaction between vibrations in Eqs.16,17. 

10 20 30 40 50

In
te

ns
ity

, a
rb

. u
n.

wavenumbers, cm-1

 experiment
 theory

 
Fig. 2. Comparison of the experimental and calculated 
Raman spectra for a five-layer Si/GeSi QD structure.  

5 Conclusions 

A theoretical investigation of the phonon spectrum of 
crystal structures with quantum dots was performed taking 
into account the real crystal structure of both the quantum 
dots and surrounding matrix. The numerically calculated 
spectrum shows a qualitative correlation to the 
experimental Raman spectrum of a multilayer Ge/Si QD 
structure.  
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