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This work classifies voiceless stop consonant place in CV tokens of English using burst release cues for clean 
(TIMIT) and telephone speech(NTIMIT). We compared the performance of cepstral coefficients to acoustic 
phonetics-motivated features such as center of gravity, burst amplitude and relative difference of formant 
amplitudes. In clean speech, cepstral coefficients resulted in better classification. However, for test data from 
NTIMIT, acoustic phonetic-based features outperformed cepstral coefficients, particularly if models were trained 
on clean speech. Augmenting cepstral coefficients with acoustic phonetic-based measurements resulted in the 
best performance only in clean speech. These findings suggest that cepstral coefficients are able to model speech 
in a given environment in finer detail, whereas acoustic phonetic-based features are more robust to changes in 
environment.  

1 Introduction 

Currently, the most popular method in speech recognition is 
a statistical method in which the speech recognizer models 
the pattern of speech signal sequences. Statistical methods 
have been successful since large training data are used to 
cover all the possible contextual variations. But problems 
arise when training data of some sounds are sparse. Also, 
because of heavy reliance on training data, the speech 
recognizer does not perform well if the operating 
environment does not match the training environment. 
Alternative speech recognition systems aim to overcome 
these problems by adopting acoustic phonetic-based 
features that reflect how the sounds are produced. These 
researches have also been classified as knowledge-based 
approaches.  
The knowledge-based approach has been applied in the area 
of classification of stop consonants, which have distinct 
places of articulation [1]: at the labial (lips) for a /p/, 
alveolar (behind the teeth) for a /t/, and velar (at the velum) 
for a /k/. Spectral variation of these sounds is attributable to 
the fact that short noise burst is shaped by the resonance 
properties defined by a particular articulatory configuration 
[2]. 
A number of acoustic cues have been proposed which 
discriminate among /p/, /t/ and /k/ with spectral variation of 
a stop burst [3, 4, 5, 6, 7, 8]. And several experiments for 
better classification accuracy were demonstrated using 
combinations of acoustic cues which had been studied in 
the past [9, 10, 11, 12]. But, although those attempts yield 
high performance, the results of stop consonant place of 
articulation classification based on knowledge-based 
features does not outperform attempts based on spectral-
based representation [13]. 
Studies which have been conducted on stop place detection 
have concentrated on finding new acoustic cues or 
obtaining higher accuracy. But research about considering 
changes in operating environment has not been investigated 
as much. In general, it is known that spectral-based 
representations are not robust to channel effects. 
The objective of this paper is to classify voiceless stop 
consonant place in CV tokens of English using burst release 
cues for clean and spectrally impoverished speech. In 
particular, we will evaluate the robustness of acoustic-
phonetic features to channel effects, compared to spectral-
based representations. 

2 Experiments 

2.1 Database 

The CV tokens are extracted using continuous speech from 
the TIMIT and NTIMIT database [14]. TIMIT database 
consists of 6300 utterances spoken by 630 speakers in quiet 
(4620 and 1680 utterances for training and test, 
respectively) and is labelled as words and phoneme unit. 
NTIMIT was collected by transmitting all 6300 original 
TIMIT utterances through various channels in the NYNEX 
telephone network and redigitizing them. NTIMIT database 
can be considered spectrally impoverished version of 
TIMIT database.   
We used labelling of TIMIT and NTIMIT to extract the 
tokens which consist of closure, release burst and vowel. 
Flat sounds were excluded. Consequently, 1836 /p/, 3143 /t/ 
and 2905 /k/ tokens were collected as experimental samples 
from TIMIT and NTIMIT respectively. 

2.2 Preparations 

Release burst points and voice onset points of the following 
vowel are needed to conduct the classification of stop place. 
In this paper, we assume there is no error concerning 
release burst and voice onset point. For this purpose, points 
from TIMIT labelling are used. Energy of specific 
frequency range of the signal is calculated for the refining 
procedure of release burst and voice onset points, i.e., in 1.7 
to 8 kHz and 60 to 400 Hz, respectively [15]. Then, the 
refined time points were selected where the rate of change 
of each band was maximal. But the range which can be 
modified from TIMIT labelling is restricted to 4ms. 
A 512-point FFT was performed with a 6-ms Hanning 
window every 1ms. This is to obtain wideband spectrum 
and catch abrupt change of spectrum. An average power 
spectra technique also was used to obtain the spectrum of 
transient and burst. 15 spectra were averaged from release 
burst point onward if voice onset time (time from release 
burst to voice onset point) was longer than 20ms. If voice 
onset time was longer than 10ms, but shorter than 20ms, 8 
spectra were averaged from release burst point onward. 3 
spectra were averaged from release burst point onward if 
voice onset time was shorter than 10ms. This procedure is 
similar to Stevens et al., [11]; but this technique was 
empirically determined to be the best for excluding 
spectrum considered as silence. 
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2.3 Acoustic cues 

There are a number of acoustic cues which have been 
proposed to classify stop place articulation. But there are 
limitations in selecting the acoustic cues to be used in this 
work, because spectrum of utterance in NTIMIT database is 
often absent about over 3.5 KHz. Based on this fact, it was 
decided to measure the following four acoustic cues: 
relative center of gravity, burst amplitude, voice onset time 
and Av-Amax23.     
Acoustic analysis have shown that release burst of stop 
consonant in each group has different spectral peak: at low 
frequencies below 1KHz for /p/, at high frequency above 
3KHz for /t/, and in the mid-frequency (1 to 4 KHz) for /k/ 
[4, 16]. Suchato has used this characteristic (concentration 
of energy in frequency domain) as an acoustic-phonetic 
feature [12]. The value of feature is center of gravity in the 
frequency unit of the power spectrum obtained from the 
time marked as the release burst to the time marked as the 
voicing onset of the following vowel. But in this work, 
center of gravity of each token is divided by center of 
gravity of sentence that each token is extracted. For this 
reason, we call it relative center of gravity.   
Burst amplitude also reflects stop place articulation. 
Alveolar stop is the strongest burst, and labial stop is the 
weakest burst. Zue [3] and Edward [8] measured burst 
amplitude as the ratio of the maximum root mean square 
(RMS) amplitude of the following vowel to the RMS 
amplitude of the burst. This measurement was adopted in 
this work. RMS amplitude of the burst was calculated using 
an averaged power spectrum which. 
Voice onset time (VOT) can also be a cue to place of 
articulation of the consonant [3, 6, 8, 17]. VOT is the time 
between release burst points and voice onset points of the 
following vowel. The general knowledge is that labial has 
the shortest VOT, while velar stop has the longest VOT. 
This temporal feature can be an important cue when 
information of spectrum is impoverished.  
Finally, Av-Amax23 was measured. Av-Amax23 is the log 
of the ratio of the amplitude of the first formant prominence 
measured at voicing onset to the maximum amplitude of the 
spectrum in the F2 and F3 range at release burst [11, 12]. 
Value of feature is expected to be least for velars, and 
highest for labials, because velars have spectral peak in 
mid-frequency (1 to 4 KHz) and labial stop is the weakest 
burst. Maximum amplitude of the spectrum in the F2 and 
F3 range at release burst used an averaged power spectrum 
which was calculated in advance. 
The values of acoustic parameters, relative center of 
gravity, burst amplitude, voice onset time and Av-Amax23, 
were measured to form one feature vector as the 
representation of a stop consonant place. Then each place 
was modeled by mixtures of 4 Gaussian densities. The 
performance according to the probability of correct 
classification was achieved by the Bayes classifier. 

2.4 Cepstral Coefficients 

The even component of the complex cepstrum, i.e., real 
cepstrum, was used to compare the robustness of acoustic 
phonetic features against channel effect. The cepstral 
coefficients were computed over the original frequency 

range (0~8 KHz) of burst release. Cepstral mean 
subtraction (CMS) was also conducted. It has been well 
known that mean subtraction improves the performance of 
a system in which training is done on one channel condition 
while testing is done on another channel condition [18]. 

3 Results 

3.1 Statistical analysis 

The measurements obtained for all voiceless stop consonant 
tokens in the training subset of TIMIT were examined using 
an analysis of variance (ANOVA). In this test, significance 
level (α) was 0.01. If p-value corresponding to the F-ratio at 
the right degrees of freedom is smaller than α, we may 
consider mean difference of three voiceless stop consonant 
place (labial, alveolar and velar) is significant and is 
originated from the place effect rather than the error. Even 
though p-value is smaller than α, it does not mean that all of 
the mean differences between groups are significant. The 
pair-wise F-ratio was used on the three possible pairs to test 
the significance of the mean difference between two 
groups. The F-ratio is listed in Table 1. The degree freedom 
between groups is 2 for three groups, 1 for pair-wise. 
Within groups is 5906 for three groups, 3697 for labial vs. 
alveolar, 3526 for labial vs. velar, and 4589 for alveolar vs. 
velar. 

 Rela. 
C.O.G 

Burst 
amp. V.O.T Av-

Amax23 

F-
ratio 

Three 
groups 

2065.8 
(0) 

1117.4 
(0) 

324.8 
(0) 

662.9  
(0) 

Labial 
vs. 

Alveolar 

4040.0 
(0) 

1994.7 
(0) 

127.2 
(0) 

616.7  
(0) 

Labial 
vs.  

Velar 

1147.6 
(0) 

621.2 
(0) 

621.0 
(0) 

1315.0  
(0) 

Alveolar 
vs.  

Velar 

1214.3 
(0) 

176.1 
(0) 

83.2  
(0) 

101.9  
(0) 

Table 1 ANOVA results (F-ratio and p-value) among 
Labial (/p/), alveolar (/t/) and velar (/k/) for 4 acoustic 
phonetic features in the training subset of TIMIT. P-values 
are shown in parentheses. 

Table 1 shows that p-values of all groups are 0s, which 
means each acoustic phonetic feature is originated from 
different distributions. Relative center of gravity shows the 
biggest F-ratio in the measurement of three groups. It also 
has quite big F-ratio values in the pair-wise. From this fact, 
we can consider relative center of gravity is the best feature 
among four features. F-ratio between alveolar and velar is 
mostly smaller than other pair-wise groups. Voice onset 
time shows worst significant difference. But we can expect 
its contribution to the classification is still significant. 
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3.2 Place detection 

The detection rate of each acoustic phonetic feature for stop 
consonant place detection is shown in Fig. 1 when the 
training and test circumstances are changed or not. 

 
Fig. 1 Detection rate of relative center of gravity, burst 
amplitude, voice onset time and Av-Amax23 for stop 
consonant place detection. Bright and dark bars are when 
the environment of training and test is same or different, 
respectively. 

As we could expect in Table 1, recognition rate in same 
circumstance gets better when F-ratio is bigger. Fig. 1 
shows that performance of most features becomes worse 
when circumstance of training and test are different, 
especially classification rate for relative center of gravity 
because of huge spectrum distortion. But performance of 
voice onset time was rarely influenced by the environment 
change. This shows that feature related to duration is robust 
to change of circumstance.Av-Amax23 was also quite good 
feature which shows little decrease in detection rate. 
Acoustic phonetic features and cepstral coefficients were 
next used to detect stop consonant place as training and test 
environment is changed or not. Fig. 2 shows the best 
classification cases for combination of acoustic phonetic 
features and cepstral coefficients, respectively. 

 
Fig. 2 The best detection cases of cepstral coefficients and 
combination of acoustic phonetic features. All acoustic cues 
are used when environment for training and test is not 
changed. 3 acoustic cues except burst amplitude are used 
for changed environment. 10 and 4 order cepstral 
coefficients are used for not changed and changed 
environment, respectively. 

When training and test circumstance is not changed, 
performance of cepstral coefficient was better than one of 
acoustic phonetic features in all places. Total classification 
rate was achieved a probability of correct classification 
equal to 82.3% for cepstral coefficients and 76% for 
acoustic phonetic features.  Bottom figure of Fig. 2 shows 
classification rate decreases overall when model is trained 
in clean speech and tested in telephone speech. In this case, 
detection rate of labial place for cepstral coefficients only is 
higher than one of acoustic phonetic features. Especially, 
detection rate of alveolar place (18.2%) using cepstral 
coefficients shows no ability to classify in that place. 
Totally, acoustic phonetic features (55.95%) outperform 
cepstral coefficients (39.95%). This is an indication that 
acoustic phonetic features are more robust than cepstral 
coefficients when environment is changed. 
 Additional experiment, combining both types of 
measurements, was conducted. Combination feature leads 
to the best performance, 89.3%, 84%, 84.8% and 85.7% for 
labial, alveolar, velar and total classification rate, 
respectively, when model is trained and tested in clean 
speech. It means that acoustic phonetic measurements 
provide complementary information to conventional 
cepstral coefficient measurements. But there was no 
enhancement under different environment of training and 
test. It may be that poor performance of cepstral 
coefficients does not supply any additional information to 
classification. 

4 Conclusion 

In this paper, cepstral coefficients and acoustic phonetic 
features such as relative center of gravity, burst amplitude, 
voice onset time and Av-Amax23 were examined in 
detection of voiceless stop consonant place in CV tokens of 
English for clean (TIMIT) and telephone speech (NTIMIT). 
When the environment for training and test is not changed, 
cepstral coefficients resulted in better classification. But 
performance of acoustic phonetic features were much better 
than cepstral coefficients under different environment for 
training and test, which means acoustic phonetic features 
are more robust to changes in environment.  
In this paper, only four acoustic features are used due to 
band-limited spectrum of telephone speech. Further studies 
will focus on extracting more features from telephone 
speech to enhance the detection performance. 
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