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The basic idea behind AABC (Active Acoustic Barrier Control) is to reduce the sound radiation of a
structure acoustically without influencing the vibration behaviour of the structure. The large surface
acoustic polymer material actuator/sensor systems are primarily meant to form the actuator/sensor
system for the AABC concept. The main component of this package is a special active device: the
rEMA – revised Elastic Mass Actuator based on the Panphonics’ G1 panel loudspeaker element. This
paper deals with the modelling and the low-frequency performance issues of the G1 flat loudspeaker.
The aim was to create an accurate mathematical model to understand the operational principles of
the loudspeaker, and then this model was used to optimize its low-frequency performance. Due to
the special structure and the optimization tasks, a new numerical method was developed to model
special multi-layer coupled vibroacoustics systems based on the Finite Difference and Boundary Element
Method. The investigation focuses on the mechanical behaviour of the panel and describes the sound
radiation properties also. The performed work was a part of the research of the project InMAR
(Intelligent Materials for Active Noise Reduction) which was funded by the European Union.

1 Introduction

Active acoustic applications are still very seldom in com-
mercial and civil life due to the technological problems
of audio elements, such as size and weight. In the re-
cent years many new promising materials have been de-
veloped and used in various applications. One of these
devices is the Panphonics’ G1 flat and light-weight loud-
speaker/sensor.

The aim of the research was to develop an active sound
insulation package that is able to increase sound trans-
mission loss of the car steel structure and thus attenuate
the interior noise field by active means. The concept is
called “Active Acoustic Barrier Control (AABC)”. The
main component of this package is a special active de-
vice: the EMA – Elastic Mass Actuator based on the
Panphonics’ G1 flat loudspeaker element. The EMA
sound package (at this stage) consists of two G1 flat
panel: one is the actuator and another one is the sen-
sor.

In order to optimize the EMA sound package behaviour,
further investigation of G1’s operation phenomena was
needed. In this paper a special modelling method will
be described which is capable to model the vibration
and the radiation behaviour of complex vibroacoustic
structures such as the G1 loudspeaker/sensor.

2 Modelling basics

The behaviour of the complex vibroacoustic structures
can be described and determined by their differential
equations and the corresponding boundary conditions.
However, these equations can be solved in many (simple)
case, generally it is difficult (nearly impossible) to de-
termine the unknown functions in explicit form. Thus,
many numerical methods have been developed to solve
differential equations approximately. Here two numeri-
cal methods will be used: the finite difference and the
boundary element method. The described methods as-
sume a set of discrete function space as the arguments of
the unknown spatial functions e.g. the unknown func-
tions will be determined only at the given points.

Finite difference method calculates the values of the
given derivative function at the given points using the
difference of the adjacent points. Thus the original dif-
ferential equations can be transformed into difference

equations, which can be reordered and formulated as a
matrix equation. Solving of matrix equation is a quite
straightforward procedure, limited only by the computa-
tion capacity of the selected numerical software/hardware.

2.1 Vibroacoustic Structure

The described numerical concept assumes different lay-
ers (structural and acoustical ones), connections between
and boundary conditions for each of them. The follow-
ing layer types are considered: plate, acoustic enclosure
and air in porous layers. The thickness of the layers can
be different, but their x and the y dimensions are equal,
and all of them have squared shape. Between the layers,
various boundary conditions can be defined.

The vibroacoustic behaviour of each layer can be de-
scribed by the partial differential equation (PDE) of the
corresponding layer. Since only time-harmonic solution
is considered, the governing equations are transformed
into frequency domain. The following layers/equations
can be defined:

Plate The PDE of a square shaped plate with preten-
sion T can be formulated as [1](

D∇4 − T∇2 − ω2ρh
)
uz(r) = f(r) , (1)

where uz(r) is the z directional displacement of the plate
and f(r) is the acting force at the given r spatial point;
D defined as D = Eh3

12(1−ν2) , where E is the Young’s
modulus, ν is the Poisson’s ratio, and ρ is the density of
plate’s material; h stands for the thickness of the plate.

Air gap The spatial pressure function of the air in
an acoustic enclosure is described by the well-known
Helmholtz equation(

∇2 − ω2

(
− ρ

κp0

))
p(r) = 0 , (2)

where p(r) is the pressure at the spatial point r, ρ is
the density, κ is the specific heat capacity and p0 is the
static pressure of air.

Porous layer The pressure distribution in the homo-
geneous porous material at low frequencies can be de-
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scribed by the following equation [2](
∇2 − jωσφ

1
κp0

)
p(r) = 0 , (3)

where, σ is the specific flow resistivity, φ is the porosity
of the porous material and the others as above.

2.2 Finite Estimation

As mentioned, the theory is based on the assumption
that the argument of the (unknown) functions are dis-
cretized, e.g. all of the corresponding functions are rep-
resented with their sampled values. Let us consider f(x)
as a scalar-valued function over the [0 L] interval. Di-
vide this interval into N points (N − 1 segments) and
define the vector of the function arguments over the se-
lected interval as

x =
[
x0 x1 . . . xN−1

]T

= Δx
[
0 1 . . . N − 1

]T︸ ︷︷ ︸
N

, (4)

where the spacings defined as Δx = L
N−1 . Based on

the vector representation of the corresponding function
samples

f(x)

∣∣∣∣∣
x∈x

=
[
f(x0) f(x1) . . . f(xN − 1)

]T

=
[
f0 f1 . . . fN−1

]T = f , (5)

and the Taylor series expansion of f−1 and f1, the sam-
ples of the second order derivative can be expressed as

∂2

∂x2
f(x)

∣∣∣∣∣
x∈x

≈
[

1
Δx2

B(2)
N

]
︸ ︷︷ ︸

L
(2)
1

f = L(2)
1 f , (6)

where the N -th order quadratic matrix B(2)
N is defined

as

B(2)
N =

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
−1 2 −1

−1 2

⎤
⎥⎥⎥⎥⎥⎦ . (7)

The higher order difference operators and partial opera-
tors can be derived in the same way based on the Taylor
series expansion of the function samples [3].

In order to derive the corresponding finite difference
equation of the plate, let us suppose that the finite argu-
ment space of plate’s z directional displacement function
will be Nx by Ny in directions x and y. Formulate now
the vector representation of the displacement function
samples as

p =
[
u(x1, y1) . . . u(xNx

, y1) u(x1, y2) . . .

u(xNx
, y2) . . . u(xNx

, yNy
)
]T

, (8)

and construct the “discrete” equation of motion⎛
⎜⎝D(L(4)

2 )− T (L(2)
2 )︸ ︷︷ ︸

Kp

−ω2 ρphI︸︷︷︸
Mp

⎞
⎟⎠u = F , (9)

where L(4)
2 and L(2)

2 matrices are the corresponding two
dimensional difference representation of the biharmonic
and the Laplacian operator and I is the identity matrix.
Let us construct the “discrete” equation of motion for
the air enclosure and the porous material in the same
way. The sampled representation of the pressure func-
tion is defined as

p =
[
p(x1, y1, z1) . . . p(xNx

, y1, z1) p(x1, y2, z1)

. . . p(xNx
, y2, z1) . . . p(xNx

, yNy
, zNz

)
]T

, (10)

and let us express the equation of motion for the air
layer as ⎡

⎢⎢⎢⎣L(2)
3︸︷︷︸

Ka

−ω2

(
−ρ

1
κp0

)
I︸ ︷︷ ︸

Ma

⎤
⎥⎥⎥⎦p = 0 . (11)

where L(2)
3 matrix is the three dimensional representa-

tion of the Laplacian operator, and I is the identity ma-
trix. The corresponding porous layer equation has the
form ⎡

⎢⎢⎢⎣ L3︸︷︷︸
Ko

+jω

(
−σφ

1
κp0

)
I︸ ︷︷ ︸

Co

⎤
⎥⎥⎥⎦p = 0 . (12)

2.3 Boundary conditions

Generally, Dirichlet (if the value of the variables are
given) and Neumann (if the derivative of the value is
given) boundary conditions are given for modelling prob-
lems. Based on a simple derivation these boundary con-
ditions cause modification of corresponding values of the
difference operator matrix values.

2.4 Coupling

Two main types of coupling are used. The first one de-
fines the connection between the structure-fluid layers
(like plate-air and plate-porous). In this case the z di-
rectional velocity of the fluid and the structure are the
same. The governing equation are

∇p(r, t) = −ρ
∂

∂t
v(r, t), (13)

∇p(r, t) = −σφv(r, t) , (14)

where both equations are the Euler’s equation. These
equations are transformed into finite difference equa-
tions and are used to calculate coupling matrices.

The second types of coupling defines the linear connec-
tions between the function values at the given points of
the model. This boundary condition can describe, for
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example, if the i-th and the j-th element are connected
(their displacement are the same for example) the cor-
responding equation will be ui − uj = 0. Let us define
these kind of equations in the following form

ZΦ = 0 , (15)

where the matrix Φ stands for the mixed variables (pres-
sure and displacement) and the corresponding row (i-th
and j-th column) of the Z matrix is the following

Z =

⎡
⎢⎢⎣

...
...

. . . 1 . . . −1 . . .
...

...

⎤
⎥⎥⎦← i-th row . (16)

Since these kind of equations mean that some variables
can be expressed as linear combination of others e.g. the
expressed variables can be neglected. A transformation
matrix T between the set of the original and the reduced
variables can be introduced as

Φ = TΦ′ , (17)

where Φ′ is the reduced variable set.

2.5 Radiation

The calculation concept assumes a simple radiation schema
as illustrated on Fig. 1. The radiating surface is rect-
angular, parallel to the x-y plane, radiates sound only
to the half space and is baffled, all the other part of the
coincident surface has zero displacement. In order to

L

xy

y

z

Ω

S

Lx

p(r)

r̂

Figure 1: A radiating surface baffled in x− y plane

derive the radiation part of the theory, let us consider
a radiating surface situated at z = 0. Express the pres-
sure value p(r) at any selected spatial point (r) using
Rayleigh’s integral formula

p(r, ω) = −2
∫
S

ρjωv̂z(r̂, ω)g(r, r̂, ω) dS(r̂)

= 2ω2ρ

∫
S

ûz(r̂, ω)g(r, r̂, ω) dS(r̂) , (18)

where r̂ ∈ S, v̂z(r̂, ω) and ûz(r̂, ω) stand for the z-
directional (normal) velocity and displacement of the
surface points, g(r, q) indicates the Green’s function which
is defined as

g(r, q, ω) =
1
4π

e
jω
c |r−q|

|r − q| , (19)

where c is the speed of sound. Using Rayleigh’s equation
(18) and combining with the definition of a linear shape
function yields

p(r, ω) = 2ω2ρ

∫
S

(
N∑

k=1

αk(r̂)ûz(r̂k, ω)

)
g(r, r̂, ω) dS(r̂)

= 2ω2ρ

N∑
k=1

ûz(r̂k, ω)
∫
S

αk(r̂)g(r, r̂, ω) dS(r̂) , (20)

where the αk(r̂) is the k-t shape function. If M differ-
ent spatial points are assumed r =

[
r1 r2 . . . rM

]T

then
p(r, ω) = ω2ρR3(r, r̂, ω)ûz , (21)

where

[R3(r, r̂, ω)]i,k = 2
∫
S

αk(r̂)g(ri, r̂, ω) dS(r̂) . (22)

The numerical integration can be made by means of
Gauss-Legendre quadrature.

2.6 Final model

After expressing the related matrices of all layers (tak-
ing into account the boundary conditions of each layer)
and calculating the coupling and radiation matrices, the
final equation of motion has to be solved. Since the ra-
diation matrix is frequency dependent, the modal de-
composition based solution of equation is not possible.

3 G1 flat loudspeaker

Panphonics’ G1 loudspeaker is an electrostatic audio de-
vice. The cross sectional view of the loudspeaker is de-
picted in Fig. 2. This cross sectional inner structure is
homogeneous to y direction. In the middle of all cells
a special foil (conductor) is placed between two porous
electrostatic thin layers (stators). The driving signal
is connected to the foil and the bias voltages are con-
nected to the stators. Due to the electric field between
the foil and the stators the foil starts to move, gener-
ates air flow trough the stators and the porous cover
layers. The foil of G1 is modelled as a plate with only

x

z

stator

porous cover layer

cell cavity

160 μm

1.9 mm

foil

Figure 2: Cross-sectional view of G1 loudspeaker

z directional displacement considered. The upper and
lower porous cover layers were modelled as plate struc-
tures and the air flow inside the layers was modelled as
a porous layer.
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3.1 Modelling results
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Figure 3: Pressure level at 1 m from loudspeaker

The measured and the calculated pressure at 1 m from
the loudspeaker can be seen in 3. It is important to
note that the driving conditions are unknown at the
measured case so only the shape of the curves can be
compared. Since the modelling conditions are differ-
ent from the measuring conditions, the low-frequency
results show larger deviation.

However, the model calculation proved the tendency of
the foil displacement at low and higher frequencies [4].
At low frequency the panel has a “global” displacement
(depicted in Fig. 4) which generates a near field local
pressure stream. Due to the half-space calculation as-

Figure 4: Displacement of the foil at 120 Hz (calcula-
tion)

sumption, the model cannot take itto account and that
is why one can see high pressure level at low frequen-
cies. At higher frequencies only the “local” displacement
dominates (see in Fig. 5)

4 Conclusion

Due to the inaccuracy of the initial parameter of the G1
(material parameters) and the indefinite measuring con-
ditions, the results show high variation. In order to get

Figure 5: Displacement of the foil at 970 Hz (calcula-
tion)

more reliable results a detailed verification measurement
is to be done and model updating is planned.
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