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Obstruent consonant landmarks are detected using spectral energy difference profiles. This study expands upon 
previous work by Liu. A. [J. Acoust. Soc. Am. 100, 3417-3430]. The proposed algorithm detects four types of 
landmarks: [stop closure], [stop release], [fricative closure] and [fricative release], where affricates are detected 
by combining [stop closure], [fricative closure] and [fricative release]. In addition to finding abrupt changes in 
energy differences, we use energy contours, relative energy and spectral center of gravity differences. This 
method results in improved performance particularly for CV obstruents. Overall detection rates for stop closure 
and release are 76.9% and 85.7% for obstruent landmarks in TIMIT, and fricatives yield 82.2% and 83.6% 
respectively. For strident fricatives, the figures are 94.7% and 93.6%.  
 

1 Introduction 

This paper expands upon previous study about landmark 
detection for knowledge-based speech recognition. An 
earlier implementation detects the glottis, sonorant, and 
burst landmarks [1]. Each landmark can be obtained by 
finding peaks and combining the extreme values in the sub-
band energy. A burst landmark indicates a location where 
abrupt changes occur in the whole sub-band energies. 
However, it sometimes misses out the landmarks when 
affected by adjacent phonemes. The proposed method 
focuses on finding of burst landmarks, and refines the 
detection method to improve the performance of obstruent 
consonant landmark detection. 
Landmark detection is a first step of a knowledge-based 
speech recognition system described by Stevens et al [2, 3]. 
The landmark offers timing information related to the 
manner, and the later steps are performed in the vicinity of 
landmarks. A knowledge-based approach is flexibly built 
by the system designer, thus the appropriate features or 
parameters for an acoustic analysis are chosen based on the 
information of acoustics and linguistics. The knowledge-
based approach attempts to construct a model of human 
perception process.  
The second step of knowledge-based speech recognition is 
extraction of distinctive features at the vicinity of the 
landmarks. Distinctive features denote the minimal set of 
features that make linguistic discriminations. The features 
are selected to represent the acoustical characteristics of 
speech [4, 5]. The decision of phoneme identity is derived 
from the binary values of features. The later step combines 
the phonemes represented by features, and then 
hypothesizes the word by comparing the sequence of 
phonemes and a lexicon. Theoretically, all phonemes are 
represented by the set of distinctive features   
straightforwardly, but the unified system for the extraction 
of each feature from speech is not completed. 
 Landmarks are strongly related to the manner of speech, 
and they are subdivided into four types: abrupt-consonantal, 
abrupt, non-abrupt, and vocalic. The detection algorithm of 
first two landmarks is implemented by Liu. A [1]. The 
landmarks of abrupt-consonantal and abrupt landmarks are 
associated with glottis vibration, obstruent consonant, and 
sonorant consonant. The glottis vibration can be regarded as 
an onset or an offset of voicing. They are assigned as g   
(glottis landmark), s (sonorant landmark), and b (burst 
landmark). Main cues of each landmark are to extract the 
extreme changes in the specific sub-band energy.  However, 
it does not perfectly cover the case where vowel and 
obstruent consonant occur sequentially. For example, in 
TIMIT corpus, there is relatively high energy above 4 kHz 
for both vowel and consonants, thus the abruptness does not 

always occurs in whole sub-band energies at the boundaries 
of vowels and consonants.   
This study focuses on the problems of earlier study and 
applies additional parameters in order to improve the 
performance of obstruent consonants. Proposed system is 
constructed based on the landmark detection proposed by 
Liu, and additional processing operates in parallel. Decision 
process used to select the reliable landmarks are included  
in final step. The obstruent consonant closure, release, and 
stop closure landmark are extracted from the proposed 
method. Fricative closure, stop release, affricates closure   
are associated with the obstruent consonant closure, and 
fricative release and affricate release are matched to the 
obstruent consonant release.    
The remainder of this paper is organized as follows. Section 
2 describes parameters used in the proposed method of 
landmark detection. The detail about detection method of 
obstruent consonant landmarks is described in section 3. 
Experimental results of proposed method are given in 
section 4. Finally, we summarize and conclude the paper. 

2 Acoustic parameters 

The parameters used in the proposed refinement method are 
specified as RMS energy, band RMS energy, spectral 
center of gravity, and voiced probability. Additional 
parameters are applied to solve the problems in the previous 
landmark detection algorithm.  
Earlier study of landmark detection uses the peak amplitude 
of each sub-band as sub-band energy, because the peak 
amplitude for the range of the formant frequency represents 
the movement of formant approximately. Otherwise, the 
RMS energy averages the peaks and nulls in the power 
spectrum, thus it is not adequate to detect the abrupt change 
in the sub-band. However, the RMS energy efficiently 
monitors the changes of energy in perspective. Thus, the 
RMS energies are added to the proposed system to improve 
the performance of landmark detection. RMS energy is 
additionally used to detect the landmark of stop closure, 
and band RMS energy between 5.0 to 8.0 kHz is used to 
detect obstruent burst landmarks. Abrupt changes are 
calculated by the peaks of the extreme values from the first 
order difference of each RMS energies. Spectral center of 
gravity and voiced probability are described in detail next.  
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Fig.1 Average values of SCOG for 
sx sentences of training set in TIMIT  

2.1 Spectral center of gravity 

The center of gravity in the power spectrum determines the 
dominant frequency where the energy is concentrated [6]. 
The pattern of spectral center of gravity (SCOG) is similar 
to the zero-crossing rate (ZCR) or the frequency of 
maximum peak amplitude (MPF).  However, the SCOG is 
influenced by both maximum amplitude and the distribution 
of energy in the power spectrum. Therefore, the SCOG is 
more efficient to monitor the specific changes in the 
spectrum than ZCR and MPF. SCOG is easily calculated by  
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where ( )iS n is a power spectrum with frequency index n at 
the frame index i, respectively. As shown in Fig. 1, the 
spectrum of periodic signal such as vowel, glide, and 
sonorant is weighted to the low frequency bands, but the 
spectrum of obstruent consonant tends to be weighted 
above 1.5 kHz. The results of Fig. 1 are preliminarily 
obtained based on the sx groups of training set in the 
TIMIT corpus. According to the experimental result of 
SCOG, the thresholds used in the decision step are 
determined.  
The extreme values in the first order difference of SCOG 
mean that the center of weight in the power spectrum 
changes abruptly.  Therefore, the difference of SCOG can 
detect the landmarks which are missed from the sub-band 
energy profiles.   

2.2 Voiced probability 

Voiced probability is used to increase the robustness to 
determine the voicing region by applying a two-state model 
[7, 8]. Most obstruent consonants are generally classified to 
the unvoiced signal. The pairs of glottis landmarks also 
represent the regions of voicing. However, the hard 
decision based on the glottis landmark causes a cumulative 
error from the glottis landmark detection. Voiced 
probability provides reliable decision of voicing 
independent to the result of glottis landmark detection.   
The features used to make Gaussian model consist of 
normalized cross-correlation values for lag 1, normalized 
cross-correlation for pitch lag, RMS energy, and relative 
energy with maximum energy in the signal. In this study, 
the fixed training model is used to calculate the voiced 
probability. Voiced probability gets values around 1.0 for 
the vowels, glides, and liquid. Otherwise, the probability is 
almost 0 for the obstruent consonants.   
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Fig.2 Difference values of additional parameters                          
TIMIT sx127: ‘The emperor had a mean temper.’ 

3 Detection method  

3.1 Candidates of landmarks 

The peak values of first order difference of additional 
parameters are combined with the burst landmark extracted 
by Liu’s method as candidates of landmarks. There are 
burst landmarks, peaks of difference of SCOG, high 
frequency band RMS energy (5.0-8.0 kHz), and negative 
peaks of total RMS energy in the candidates. The peaks of 
difference of SCOG and high frequency band energy are 
used in the detection of obstruent closure and release 
landmarks with burst landmarks. Negative peaks of total 
RMS energy are only used in the detection of stop closure 
landmarks. Fig. 2 shows an example of the first order of 
difference of additional parameters. The repetitions of 
peaks are rejected in the candidates.  
The burst landmarks are extracted by combining the peaks 
locations extracted by picking the extreme values from the 
whole sub-band energies. It means that the abrupt changes 
for whole frequency bands are regarded as a burst landmark 
associated with the obstruent consonant. Positive peaks 
marked as '+b' are related to the locations for fricative 
closure and stop release, and negative peaks marked as '-b' 
are related to locations of fricative release and stop closure 
[1].   
Candidates of obstruent landmarks are tested with the 
development set which consists of 100 sentences from the 
sx groups in the training set of TIMIT corpus. About 90% 
of landmarks are matched to the transcription of TIMIT, 
respectively. However, the preliminary test does not take 
into account insertions. In order to reduce needless 
landmarks from the candidates, decision rules are required 
for the landmark detection system.  
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Fig.3 Decision rules of proposed method 

3.2 Decision rules 

 To reduce the spurious information in the candidates of 
landmarks, the decision rules are applied as in Fig. 3. There 
are three tests in the decision step: voicing test, silence test, 
and SCOG test. Decision rules are sequentially applied to 
the candidates. 
The first step is a rejection of the peaks located in the 
voiced region. Ideally, most of obstruent consonant are 
located outside of the pairs of glottis landmarks marked 
with ‘+g’ and ‘-g’. However, the voiced probabilities are 
measured for the candidates located outside of glottis 
landmarks in order to reduce the cumulative errors caused 
by glottis landmark detection. If the voiced probabilities are 
below 0.3 for the vicinity of candidates, the silence test is 
applied with candidates.  
The second step is performed on the negative peaks in the 
candidates. It measures the RMS energy from the negative 
peaks. If the RMS energy has a value around 0-10dB during 
at least 60 ms, negative peaks of candidates are decided as 
stop closure landmarks. Stop closure is generated by the 
complete closure of oral cavity and there are significant 
energy drops. Therefore the stop closure has the lowest 
energy in the signal and it typically continues between 50 to 
150 ms in duration [9]. For the remainder of candidates, 
SCOG is measured at the vicinity of peak locations to test 
the obstruent closure and release landmarks. The threshold 
of SCOG is determined based on the result of training 
database shown in Fig. 1. The landmarks of obstruent 
closure and release are selected if the SCOG measured 
around  candidates are above 1.5 kHz.  
The final result with spurious candidates rejected are 
summarized as obstruent closure, obstruent release, and 
stop closure. Obstruent closure is a landmark associated 
with the onset time of fricative, affricate, and stop plosive. 
Obstruent release is related to the end of fricative and 
affricate. Thus, fricatives can be represented by the 
landmarks as obstruent closure and obstruent release. 
Affricates are represented as stop closure, obstruent closure 
and obstruent release. Stop consonant includes stop closure 
landmark and obstruent closure. Because stop plosive does 
not always placed with stop closure, the obstruent closure 
continuously occurred to stop closure is not determined as a 
stop burst. 
   
 

Fig.4 Experimental results for obstruent consonant 

4 Experimental results 

Database is subdivided into development set and test set 
from the TIMIT corpus. The development set is composed 
of 100 sentences included in the sx groups of TIMIT 
training set. It is used to develop the landmark detection 
algorithm. For the performance evaluation, 840 sentences in 
the sx groups of TIMIT test set are selected. The numbers 
of tokens in the transcription of TIMIT test set are 
distributed as: fricative closure and release (3301), stop 
burst (3417), and stop closure (4068).  
The performance evaluation is tested with 30 ms error 
boundary and hand correction for the test result is not 
included in the evaluation. Overall, 84% of landmarks are 
detected within 30ms and 32% of landmarks are inserted. 
The insertion rate includes both the neutral and insertion in 
the test. The results for each landmark are shown in Fig. 4. 
For the result of obstruent closure and release landmark, 
strident fricatives such as /s/, /sh/, /z/, and /zh/ are matched 
to the landmarks over 92%.  98% of landmarks are detected 
for the affricates. For the stop consonants, voiced stops 
have less performance than the unvoiced stops.  Unvoiced 
stops are matched to the landmark over 90% and landmarks 
are detected with around 80% for voiced stops. Especially, 
the bilabial voiced stops such as /b/ have lowest detection 
rates with 71%. To summarize result, voiced fricatives and 
stops show lower performance than unvoiced consonants 
because the parameters of voiced consonants located in the 
vicinity of vowel are smoothed and the result of vowels 
affect the decision of voiced consonants. 86% of stop 
closure landmarks are detected by the test. Voiced stop 
closure has less performance than the unvoiced stop closure. 
The results of stop closure are influenced by the types of 
stops.  Bilabial stop closure has the highest performance 
and alveolar stop closure has the lowest performance.  
To compare with the earlier study, the result of burst 
landmark without hand-correction achieves to 81% of 
detection rates and 72% of insertion and neutral. The results 
of proposed algorithm have higher detection rates over 3% 
and lower insertion rates under 42% than the previous study.    

5 Conclusion 

The objective of this study focuses on the detection of 
obstruent consonant landmark. Landmark detection system 
is a first step in a knowledge-based speech recognition 
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system. Therefore, accuracy of landmark detection is 
required to reduce the cumulative errors in the later process. 
The proposed algorithm suggests the refinement of 
landmark detection method. Previous method of landmark 
detection extracts the landmark by combining the extreme 
values in the sub-band energy. However the method based 
on the band energy profile can miss out the landmarks of 
obstruent consonant for CV or VC tokens. The changes of 
spectral center of gravity provide more effective 
information than the difference of sub-band energy. The 
overall result of experiment shows the improvement of 
landmark detection for the TIMIT corpus. Overall, 86% of 
landmarks are detected. The obstruent closure and release 
landmarks are detected with 83% and 82% detection rates, 
respectively. The stop closure landmarks are detected with 
87% detection rate. The performance of proposed method   
has improved over the earlier landmark detection method.  
Most of detection errors of proposed method are caused by 
the hard decisions at the final steps. Although the decision 
step uses the additional parameters, most of decision still 
determines the factors with hard decision. In order to 
improve the performance of landmark detection system, 
fixed threshold should be changed adaptively by updating 
the threshold from the training. Also, the various 
parameters used in decision step are required to make 
reliable decision.  
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