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bINSA de Lyon - LVA, Bâtiment St. Exupéry, 25 bis avenue Jean Capelle, F-69621

Villeurbanne Cedex, France
a.s.elliott@pgr.salford.ac.uk

Acoustics 08 Paris

3339



Measuring only force mobilities it is possible to derive a moment mobility without the need for an externally 
applied moment. The method uses finite differences of both forces and velocities about a central point. In this 
way responses due to pure forces and moments can be extracted. There are, however, errors associated with 
finite difference techniques. In this case the purity of the extracted quantities depends on the area over which 
they are measured and its significance in terms of wavelength. Meanwhile experimental errors such as noise 
dictate that the area is sufficiently large to provide differences which are not easily corrupted. The paper 
quantifies the finite difference error for beams in a general way free of situation specifics.  Finally the method is 
validated with a moment mobility measurement of a beam compared to theory.   

1 Introduction 

Frequency response functions such as mobility, accelerance 
and receptance may be used to relate velocity, acceleration 
and displacement to a force respectively.  Then, using 
mobility for example, we can calculate forces and velocities 
at points which we have characterised.  FRFs have many 
uses but here we pay specific attention to their use in the 
characterisation of structure borne sound sources.  The 
results presented are however general. 
Since mechanical power is basically a product of force and 
velocity, the mobility Y is considered as a convenient 
quantity for structure borne sound source characterisation.  
A structure’s mobility can be represented by a matrix N × D 
square, where N is the number of connection points and D 
the number of degrees of freedom.  For a full description 
the number of degrees of freedom would be six to account 
for three orthogonal axis directions and a rotation about 
each of these axes.  A full description must therefore relate 
exciting forces and moments to the resulting linear and 
angular velocities.  They may also relate one point in space 
to another.   
Translational degrees of freedom will for most cases be the 
dominant mechanism for power transmission.  However, in 
some cases it may also be necessary to consider rotational 
degrees of freedom [1].  Also, when inverting mobility 
matrices, all significant degrees of freedom should be 
included for a representative impedance matrix to be 
obtained [2].  
In general, rotational degrees of freedom are considerably 
more difficult to measure than their translational 
counterparts [3].  If rotational degrees of freedom are 
considered to be of importance, one will be required to 
measure exciting moments and the resulting linear/angular 
response velocities, often termed moment mobilities.   
The requirement for moment mobility measurement 
techniques was highlighted some time ago [4,5].  Moment 
mobility measurement however still remains a current 
problem today for various reasons.  A particular difficulty 
with moment mobility measurement is associated with 
applying and accurately measuring an exciting moment [6].  
The aim of the paper is to demonstrate a useful method for 
measuring moment mobilities.  The method is very fast to 
apply but has specific errors associated with it.  Here we 
present a very brief history, a feasibility demonstration, an 
error analysis and a validation by measurement.  
The technique is shown to yield good results for a 
frequency range well in excess of that usually considered 
for structure borne sound source characterisation.  The 
results will also be of interest to other disciplines. 

2 Background 

Various methods for applying measured moments for the 
determination of moment mobilities have been proposed.  
Examples include moment exciters [7], magnetostrictive 
exciters [8], synchronized hammers [9], blocks [1,10].  A 
history and break down of methods is given in [11] and also 
conveniently tabulated in [12].  It is also noted here that, in 
general, the more costly and time consuming methods 
provide better results.  Unfortunately, this is counter to the 
requirements of industry which requires fast, low cost, 
engineering approaches.         
In this respect, one method of particular interest is the 
central difference technique [13] reported by Sattinger in 
1980.  In this paper a reasonable agreement between beam 
theory and measured beam moment mobilities was shown.  
It should be noted however that the equipment typically 
used to measure the required quantities has improved 
significantly since this time.    
The main advantage of the central difference method is the 
ease with which it can be applied.  Moments are excited by 
applying a force directly to the structure at a small distance 
from the point of interest; thus, effectively using the 
structure itself as a lever.  The method requires a force 
hammer, two accelerometers and two excitations to 
determine a force mobility and moment mobility, together 
with their related cross mobilities simultaneously.   
There are of course associated frequency limits imposed by 
the finite difference approximation.  However, for the 
frequency ranges commonly of interest with respect to 
structure borne sound, this frequency limit may not be of 
concern.  In which case, the problem is one of balancing the 
finite difference approximation with the unavoidable 
experimental uncertainties. 
In order to optimise the central difference method for use in 
specific cases it is useful to have a general understanding of 
the errors associated with the method.  Then, for any given 
case the finite difference error can be balanced with 
experimental errors for the specific frequency range we are 
interested in.  
In this paper, firstly the measurement technique is outlined.  
A simulation of the method for a theoretical beam is then 
presented to demonstrate feasibility of the method.  The 
finite difference error for infinite and finite beams is 
presented.  A validation of the derived moment mobility 
error for finite beams is presented for the example used to 
highlight the feasibility of the method.  A measurement of 
beam moment mobility by central difference is presented 
with comparison to what would be expected according to 
beam theory.   
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3 Measurement of moment mobilities 
by finite difference 

By applying a force F1 directly to a structure at a distance 
F from the point of interest a moment  is generated.  

Thus at the point of interest we have an effective force F0 
and moment 0.  Similarly, an effective velocity v0 and 
angular velocity 0 can be defined.      
 

 
Fig. 1 Force excitation and velocity response measurement 

for the determination of force and moment mobilities. 

These excitations and responses however will be coupled as 
forces and moments will have caused both translational and 
angular velocities.  With a second excitation F2 forces and 
moments can be separated and by measuring a second 
velocity v2 angular and translational velocities can be 
extracted.  The mobilities to be derived are defined as 
follows, 
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Here v, F,  and  correspond to velocity, force, angular 
velocity and moment respectively.  Eq.2 and Eq.3 are 
referred to as cross mobilities as they relate rotational and 
translational degrees of freedom.  Cross mobilities for the 
same point are equal by reciprocity.  Eqs. 1 and 4 are force 
and moment mobilities respectively.   
Referring to Fig. 1 it can be seen that applying the force F2 
will generate a positive moment and F1 a negative moment.  
Thus the sum of the two will cancel the moment giving a 
force at the point of interest.  The difference between F1 
and F2 on the other hand will cancel forces, indirectly, 
giving a moment.   Similar arguments lead to linear and 
angular velocities from v1 and v2.   
It is possible therefore to derive force, moment and cross 
mobilties purely from force (point and transfer) mobilities. 
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Where Eq. 8 is essentially the central difference equation 
[13].  Thus, force and moment mobilities can be found 
simultaneously from two excitations and two measured 
responses. 
In a practical sense it is unlikely that one will deal with 
velocities and forces directly in this way.  Rather, one will 
measure mobilities as transfer functions.  In which case, we 
may replace the response v1 to excitation F2 with the 
mobility Y21 for example.  We may then rewrite equations 5 
to 8 in matrix form,  
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The resulting matrix then conveniently includes all mobility 
terms.  This formulation only applies to this single point 
two degree of freedom case but can be extended to further 
points and degrees of freedom relatively easily if required. 
In comparison to other methods the ease with which the 
central difference technique can be applied is of significant 
benefit.  Providing measurements of a reasonable quality 
are possible the method should provide a useful engineering 
tool.  There follows a feasibility study for a specific case.    

4 Feasibility 

The errors associated with the proposed method can be 
determined to some extent through simulation.  The range 
of individual situation specifics are however difficult to 
generalise 
For mobility, direct validation is limited to predictable 
structures such as beams and perhaps the first few 
resonances of a plate where theoretical models can be used 
for comparison.  Structures with a high modal overlap will 
not tax the measurement method sufficiently as modal 
behaviour is the most difficult to determine.  Thus lightly 
damped resonant beams or plates make suitable validation 
structures. 
As a preliminary validation a theoretical free-free beam 
model is used.  The properties of a 50cm long steel beam of 
1cm thickness were calculated.  A point of interest was 
defined for which the force, moment and cross mobilities 
were calculated.  For a separation  = 5mm the method was 
simulated.  Shown in Fig. 2 is the mobility magnitude and 
phase calculated directly for the beam and compared to that 
found indirectly from Eq. 8. 
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Fig. 2 Magnitude and phase of moment mobility derived 

using the central difference method.  Solid line: theoretical 
moment mobility.  Dotted line: calculated using central 

difference. 

Similar plots can be made for the force and cross mobilities.  
However, for this small separation (  = 5mm) differences 
between theory and application are virtually indiscernible.  
The moment mobility simulation shown here is likely the 
best achievable result as transducer dimensions will not 
allow for a smaller .  Noise was not accounted for in this 
simulation.  Shown later are moment mobilities found from 
real measurement data to demonstrate the reality of the 
method in terms of application. 
Results of this simulation appear favourable over a large 
frequency range.  Should such a large frequency range not 
be required it would be possible to reduce the sensitivity of 
the method to measurement errors by increasing the 
separation .  There follows a discussion and quantification 
of the finite difference error in relation to .  Discussions 
are limited to the moment mobility as errors in the force 
and cross mobilities will be small in comparison. 

5 Error Analysis 

Two errors types limit the use of the finite difference 
method.  Firstly, the purity of the extracted quantities 
depends on the separation  and its significance in terms of 
wavelength. Counter to this, experimental errors such as 
noise dictate that  is sufficiently large to provide 
differences which can be resolved from the noise floor.  
The former error is due to the assumption of rigid body 
behaviour over the distance 2 .  This error can therefore be 

controlled or perhaps minimised if one has some 
understanding of its nature.  Other important sources of 
error include measurement chain phase and amplitude 
mismatches and inaccurate accelerometer placement or 
excitation position.  As the finite difference error in 
moment mobilities is significantly greater than for force 
and cross mobilities we concentrate our error analysis on 
the moment mobility.  
If we consider firstly an infinite beam, point force and 
moment mobilities may be given by, 
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Where  is angular frequency, B is bending stiffness and k 
is the wave number.  Performing a power series expansion 
of point and transfer infinite beam mobilities in accordance 
with Eq. 8 we obtain the approximate point moment 
mobility Y’ / .  
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Referring to Eq. 12 it can be seen that the expanded terms 
are moment mobility errors due to the finite difference 
technique.  The normalised moment mobility error can 
therefore be written.  
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Plotted in Fig. 3 is the percentage error in the moment 
mobility modulus resulting from the central difference 
approximation, calculated using Eq. 13. 

 
       k  

Fig. 3 Percentage error in moment mobility for any infinite 
beam. 

Fig. 3 presents the first term approximation of the error 
plotted against Helmholtz number.  For infinite beams the 
finite difference error is small where k <<1.  However, 
when k <<1 test subjects rarely behave like infinite 
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structures.  The implications of the method relating to 
modal behaviour must therefore be accounted for. 
The force [14] and moment mobilities of a simply 
supported finite beam may be written, in closed form, 
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Using Eq. 14 as a starting point, the finite difference errors 
associated with the method can be characterised in a more 
general way by using a Taylor series expansion in two 
variables.  The resulting analysis is not shown here as the 
result can be easily verified using the free-free beam 
example from the previous section.  Despite some rather 
drawn out analysis a simple first term approximation of the 
error can be obtained and normalised as before to give, 
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Although derived using the simply supported beam as a 
starting point this result will apply to any beam.  The 
generality of Eq.16 allows useful insight into the nature of 
the moment mobility finite difference error.   
The generality of this result is demonstrated in Fig. 4.  
Consider again the moment mobility of the free-free beam 
shown previously in Fig. 2. 

 
Fig. 4 Finite difference error in moment mobility.  Solid 

line: percentage error in theoretical moment mobility shown 
in Fig.2.  Dotted line: Estimated error in moment mobility 

from Eq. 16.  

It is shown in Fig. 4 that Eq. 16 provides a good 
approximation to the finite difference error experienced in 
practice, providing k <<1.  It can be seen that much larger 
errors are observed when trying to account for modal 
behaviour in comparison to infinite behaviour. 
If we inspect Eq. 16 it can be seen that the finite difference 
error will increase with frequency and the separation  used 
for the measurement.  Also where the moment mobility is 

small, as it will be at anti-resonance, the error in the 
moment mobility may be large.  Maximum errors in the 
range 100 to 1000% are observed for the case given.  These 
max errors are due to small shifts in frequency for position 
dependent anti-resonances and the large dynamic range in 
the given example.  Only small errors are observed in the 
estimations of mobility peaks.  This is because resonances 
will be found to be always at the same frequency regardless 
of measurement position. 

6 Validation using measured data for 
a free-free beam   

In order to verify the method in terms of real measurements 
a laboratory test was carried out.  A beam was used as the 
validation structure as beam mobilities can be calculated 
and fitted to measured data visually.  A 9mm thick steel 
beam was used to provide a challenging dynamic range.  
Using measured beam dimensions/properties approximate 
theoretical beam mobilities were calculated.  The wave 
speed and damping were then adjusted in the model to fit 
with measured beams point force mobilities.  This was done 
by trial and error.  Exact fitting over a large frequency 
range was not possible so a compromise was met which 
favoured the centre of the 0-3kHz range. 
Shown in Figs. 5 and 6 are estimates of beam moment 
mobility magnitude and phase compared with those 
calculated from theory, respectively.  

 
Fig. 5 Moment mobility magnitude.  Solid line: Magnitude 

of moment mobility predicted from theory.  Dotted line: 
Moment mobility from measured data using Eq. 8.  

For the example shown in Figs. 5 and 6 a separation  of 
1cm was used.  As discussed previously it was not possible 
to fit measured data exactly to the theoretical.  The 
frequency shift seen in the predictions of the resonant peaks 
would not be observed in reality.  Thus there is a slight 
compression of the frequency axis for the measured data 
relative to the theoretical.   
Although slightly distorted the measured moment mobility 
can be seen to compare well with that predicted from 
theory.  As shown in Fig. 6, measurement noise can be 
clearly seen in the phase of the moment mobility below 
1kHz.   
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Fig. 6 Moment mobility phase.  Solid line: Phase of 

moment mobility predicted from theory.  Dotted line: from 
measured data using Eq. 8.  

If measurement noise posed a problem for a specific case 
but a large frequency range was not required there is clearly 
scope for optimisation of the technique. 
Measurements using this technique have been used in 
another study to investigate impedance and mobility 
relationships.  The method was found to be of sufficient 
accuracy determine a requirement for the inclusion of 
moment mobilities in describing a single point coupling of 
two beams.  Some related discussions are presented in [15].  

7 Conclusions 

A method for measuring force, moment and cross 
mobilities simultaneously was shown to be feasible as a 
technique.  The method has been presented previously by 
other researchers but FFT analysers have since improved 
significantly.  Now, given an analyser with a reasonable 
dynamic range, good results can be obtained with very little 
effort. 

The error associated with the measurement of moment 
mobilities by central difference is seen to increase with 
frequency and the separation used.  The error is inversely 
proportional to mobility magnitude.  As a result, anti-
resonances are affected most severely. 

Errors associated with infinite structure behavior were 
found to be small.  The errors presented are applicable to 
beams only. 

Validation tests for the method using beam data measured 
in a laboratory showed good agreement with theory 
between 500Hz and 3kHz.  The method could be further 
optimised for a particular frequency range if required.  
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