
Diffuseness and sound field distribution at room
boundaries

Jean-Daniel Chazota and Jean-Louis Guyaderb
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In the present work, a classical modal analysis is used up to medium frequencies to study the sound field
distribution, and its diffusivity, particularly at boundaries. Due to intensification zones at boundaries,
the diffuse field distribution at room boundaries can not be assimilated to the distribution inside the
room. Moreover, diffusivity at room boundaries, that is of interest for sound insulation measurement ,
is usually only related to an incidence angle while inside the room volume several descriptors such as
a correlation function and the spatial uniformity are necessary to characterize a diffuse field. In this
paper, we present a new descriptor adapted to characterize the sound field diffusivity at boundaries.
This descriptor is called Boundary Diffuse Field Index. Its averaged value over a specific surface can be
related to a limit incidence angle, and its standard deviation can be related to the spatial distribution
over the surface. Finally, thanks to this descriptor, Sabine’s assumptions of diffuse sound field are also
evaluated in this study.

1 Introduction

Sound transmission measurements in laboratory are usu-
ally made with the two reverberant rooms conventional
method. However, several studies [5, 3, 9], have shown
the variability of these measurements between different
laboratories, at low frequencies but also surprisingly at
high frequencies with differences higher than those au-
thorized by the norm [1]. Indeed, at high frequencies,
one could expect to have a diffuse field independent of
excitation conditions, and therefore a good reproducibil-
ity of measurements. The same problem is encountered
for sound absorption coefficient measurements at high
frequencies in [2, 14]. Indeed, sound absorption coeffi-
cients can vary according to excitation conditions such
as room absorption, room shape and the number of dif-
fusers in the room.
According to Sabine’s theory, above the cut-off frequency
[13], modal separation is small compared to modal over-
lapping, and the sound field can be considered as diffuse.
This means that propagation of sound in any direction
is equally probable, and that sound waves are not cor-
related. In this case, Sabine’s theory gives a relation
between the mean-square pressure in the room, room
absorption and room dimensions. However, room ge-
ometry, damping distribution and variation of absorp-
tion coefficient with incidence angle are not taken into
account.
In the work presented here, a classical modal analysis
is used at medium frequencies to study the sound field
distribution in a rectangular room, and its diffusivity,
particularly at boundaries. Sabine’s assumptions of dif-
fuse sound field are also evaluated in this study. As
noticed in [7], the modal analysis method works well to
model reverberant sound field as long as modal coupling
is taken into account. For small damping coefficients,
modal decoupling can however be assumed. In the fol-
lowing, modal uncoupling is used as simplification. In
the same way, the eigenmode and the free-wave models
are found consistent to describe diffuse sound fields in
[16]. Indeed, the same space correlation function and
the same interference pattern anomalies are found with
the two models.
In fact, classical modal analysis has already been em-
ployed by the past to study sound diffusion in reverber-
ation chambers [12, 10]. Angular distribution of sound
energy flux, averaged over the measuring wall, has hence
been determined. Other studies have also been per-
formed to characterize a diffuse sound field distribution.
Damping effects on spatial distribution have been stud-

ied in [7]. Cross-sectionally averaged mean-square pres-
sure distribution is presented in [6]. Finally, directional
and spatial variations of sound fields have been exam-
ined experimentally. However, sound field distribution
over the measuring wall has not been studied in details.
Finally, a spatial correlation function in sin(kx)/kx has
been established for a perfect diffuse field [8]. However,
a sound field having such spatial correlation function is
not necessarily mean diffuse. It is therefore necessary
to study the spatial distribution of the sound field to
evaluate its diffusivity. Some statistical properties of
reverberant sound fields are for example given in [15].
However, in these studies, a perfect diffuse field is as-
sumed with random phased plane waves.
More recently in [11], the characterization of a diffuse
field in reverberant rooms has been studied with two
descriptors evaluated with the classical modal method:
the correlation function, and the spatial uniformity. A
minimum of 20-30 modes in the measurement band is
recommended in conclusion of this study to get a good
diffuse field. However, the spatial uniformity is evalu-
ated with 20 measurement points located far from the
walls. Therefore, diffusivity at room boundaries is not
included in this study.
In conclusion, diffusivity at room boundaries is usually
restricted to a limit incidence angle while inside the
room volume several descriptors are necessary to char-
acterize a diffuse field. Due to intensification zones at
boundaries [17], the diffuse field distribution at room
boundaries can not be assimilated to the distribution
inside the volume. In this paper, we present a new de-
scriptor adapted to characterize the sound field diffusiv-
ity at boundaries. This descriptor is called Boundary
Diffuse Field Index (BDFI). Its averaged value over a
measurement surface can be related to a limit incidence
angle, and its standard deviation can be related to the
spatial distribution over the surface. This descriptor is
first evaluated with the classical modal method. Then
measurements of the Boundary Diffuse Field Index in a
reverberant chamber are presented. Finally, influences
of excitation conditions on the the boundary diffuse field
index and on transmission loss are compared in order to
relate the acoustic field difuseness with variations of the
transmission loss. .
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2 Acoustic Field Model

Several kinds of model can be used to describe the acous-
tic field inside a room. For small rooms, a modal expan-
sion of the pressure can be employed, while for large
rooms with high reverberation, wave’s models are pre-
ferred. In this section, two models are presented and
used to characterize a reverberant room.

2.1 Classical Modal Analysis

Reverberant and boundary pressures are calculated with
the following modal expansion of the room pressure:

P (x, y, z) =
∑
p,q,r

Apqrψpqr(x, y, z) . (1)

Time dependence is omitted for sake of simplicity. In
this expansion, a mode pqr is defined by an amplitude
Apqr, a norm Npqr, a wave number kpqr, and a shape
ψpqr :

Apqr =

∫
Vr

ψpqr(x, y, z)S(x, y, z)dV(
k∗2 − k2

pqr

)
.Npqr

, (2)

Npqr =

∫
Vr

ψ2
pqr(x, y, z)dV , (3)

with Vr the room volume, S(x,y,z) the source distribu-
tion, and k the complex acoustic wave number that takes
into account acoustic damping ηr such as k = ω

c
√

(1+jηr)
.

Acoustic damping can also be related to the room rever-
beration time thanks to ηr = 2.2

f.Tr .
In the following, a rectangular room is considered with
rigid boundary conditions and excited by a point omni-
directional source located at x0, y0, z0 :

ψpqr(x, y, z) = cos(
pπ

lx
x)cos(

qπ

ly
y)cos(

rπ

lz
z) , (4)

S(x, y, z) = S0.δ(x− x0).δ(y − y0).δ(z − z0) . (5)

Quadratic room pressure Pr is then obtained by averag-
ing the room pressure squared inside the room volume:

P 2
r =

1

2

∑
pqr

∫
Vr

(|A2
pqr| (ψpqr(x, y, z))

2
)dV

Vr
. (6)

Finally, the local boundary pressure, also called blocked
pressure Pb, is obtained by averaging the room pressure
on a small boundary surface Si:

< Pb >i=

∫
Si

(∑
p,q,r

Apqrψpqr(x, y0, z)

)
dxdz . (7)

2.2 Free Wave model

A perfect diffuse field is assumed according to Sabine’s
theory with an isotropic sound field made of incident un-
correlated plane waves coming from all directions. The
reverberant pressure Pr is therefore related to incident
plane waves’ amplitude Pi as follows :

P 2
r =

∫
Ω

P 2
i dΩ =

∫ 2π

0

∫ π

0

P 2
i sin(θ)dθdϕ = 4πP 2

i . (8)

Local boundary pressure is obtained by limiting the solid
angle to a half space, and by taking into account re-
flected waves:

P 2
b =

∫
Ω/2

(2Pi)
2dΩ =

∫ π

0

∫ π

0

4P 2
i sin(θ)dθdϕ4π

= 8πP 2
i = 2P 2

r . (9)

This equation shows the well known increase of +3dB
in a diffuse field at boundaries. It is also possible to
use a limit incidence angle to suppress grazing waves.
In acoustic transparency, this limit angle is commonly
used with a value around 78◦. In this case, a ratio of 1.6
is obtained between the blocked pressure and the room
pressure
From the wave model, the sound field distribution in the
room volume and at room boundaries is clearly uniform.
On the other hand, the classical modal analysis enables
to study the sound field distribution. It is thus interest-
ing to see if the sound field uniformity is verified with
this other approach.

3 Boundary Diffuse Field Index

This section presents a boundary diffuse field index em-
ployed to characterize an acoustic boundary field.

A perfect diffuse field according to Sabine’s assumptions
gives a ratio of 2 between the boundary pressure and
the room pressure (equation (9)). From the classical
modal analysis, it is possible to evaluate this ratio locally
by using the averaged boundary pressure over a patch
surface (7) and the room pressure (6). This ratio can
be seen as an index of diffusivity at boundaries, and is
therefore called the Boundary Diffuse Field Index:

BDFI =
〈Pb〉2i
P2

r

. (10)

However, the local value of the Boundary Diffuse Field
Index is not pertinent statistically. It is indeed impor-
tant to see its mean value and its standard deviation
over a large surface to evaluate the diffusivity of the
sound field at boundaries:

BDFI =

N∑
i=1

〈Pb〉2i
N.P2

r

, (11)

σ =

√√√√ 1

N

N∑
i=1

(
〈Pb〉2i
P2

r

−BDFI
)2

. (12)

Here the room pressure is assumed uniform in the room.
In practice, special devices such as a moving microphone
enables to get a good evaluation of the mean room pres-
sure.
An example of Boundary Diffuse Field Index averaged
over a large surface with 247 patches is presented in
Fig(1). Mean values and standard deviations are repre-
sented on each third octave band.
In third octaves, averaged values tends to 1.6 with a
standard variation of 0.5. Globally the perfect diffu-
sivity assumed with the plane wave summation is not
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Figure 1: Calculated mean BDFI value and standard
deviations - Room dimensions: lx=11.5m, ly=8.69m,

lz=4.03m - 247 patches over a surface of 0.96m x 1.5m
centered on x=6m y=0m z=1.75m - Patch dimensions
: ΔX = 0.08m, ΔZ = 0.074m - Source position x=2m,

y=4m, z=1m - Cut-off frequency: 187Hz

reached. A correlation between incident plane waves
can lead to a BDFI greater than two. On the contrary a
lack of incidence angles can lead to a BDFI lower than
two. In fact the two phenomenons can interact in op-
posite ways and cannot be distinguished. Comparison
with the theoretical value of a perfect diffuse field gives
then only the main phenomenon. In practice, at low
frequency the BDFI can exhibit very high or very low
values, but is not pertinent due to the room modal be-
haviour. On the contrary, above the Shroeder cut off
frequency, i.e. 187Hz for the tested room, a diffuse field
is expected.
In this later case, values lower than 2 can be related to a
limit incidence angle. Indeed, by introducing a limit in-
cidence angle between 78◦ and 90◦, the theoretical BDFI
varies from 1.6 to 2. The BDFI high frequency limit ob-
tained for the tested surface leads therefore to consider
a limit angle of 78◦.
The standard deviation presented in Fig(1) is also a
good tool to verify the diffusivity of the sound field at
boundaries. It is indeed possible, at low frequency for
example, to get a mean BDFI of 2 without having a
good uniformity of the local BDFI on patches. At high
frequency where a good uniformity is obtained, the stan-
dard deviation is very low. At medium frequency, uni-
formity on some third octaves is not always reached. It
is however important to distinguish the sound field uni-
formity, and its diffusivity that is related to properties
of isotropy. For instance, an adding of absorption will
improve the sound field uniformity but not necessary its
diffusivity.
Experimental BDFI distribution over a large surface on
two third octaves 80Hz and 2000Hz are presented in fig-
ures (2) and (3). At low frequency, modal behavior is
observed, while at high frequency source directivity ap-
pears clearly. The source direct contribution, without
appearing as clearly as in the presented case, can how-
ever lead to heterogeneities in the acoustic boundary
field that can be then observed with BDFI standard de-
viations. Hence, thanks to the BDFI mean values and
standard deviations, different kinds of phenomenon can
be detected such as a modal behaviour, an important
direct source contribution, or the effect of an intensifi-
cation zone.

Figure 2: xy spatial BDFI distribution at 80Hz - Room
dimension : Lx=11.5m Ly=8.69m Lz=4.03m - Cutoff
frequency: 187 Hz - Source Location : x=2m y=2m

z=0.5m

Figure 3: xy spatial BDFI distribution at 2000Hz -
Room dimension : Lx=11.5m Ly=8.69m Lz=4.03m -
Cutoff frequency: 187 Hz - Source Location : x=2m

y=2m z=0.5m

4 Effects of sound field diffusivity

on sound transmission

4.1 Theoretical study

In order to study the influence of source location on the
sound pressure diffusivity over a boundary surface, three
source locations have been tested. The studied case is
presented in Table (1).

Mean BDFI obtained with these three source conditions
are presented in Fig(4) and show that the boundary
pressure field diffusivity is very sensitive to the source
location below 500Hz. Above 500Hz, the mean BDFI
tends to the same value of 1.6 and confirms the lack
of grazing waves that is already known and taken into
account with the limit incidence angle.
Spatial standard deviations obtained with the same three
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Room dimensions lx=11.5, ly=8.69, lz=4.03
Cut-off frequency 187 Hz
Surface dimension lx=0.96, lz=1.5

Surface center x=6, y=0, z=1.75
Patch dimensions Δx = 0.08, Δz = 0.074

HP 1 position x=2, y=4, z=1
HP 2 position x=4, y=2, z=1.5
HP 3 position x=0.25, y=0.25, z=0.25

Table 1: Theoretical study parameters (lengths in m)

HP 1
HP 2
HP 3
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Figure 4: Mean BDFI for three source positions

source conditions are presented in Fig(5). The global
trend shows a reduction of the standard deviation at
high frequency. Therefore, as expected, the boundary
pressure field is more uniform at high frequency. How-
ever, the standard deviation does not necessary decreases
above the cut-off frequency, and is also very dependant
on the source location. One can also notice that the po-
sition HP2 gives standard deviations higher than other
positions. This is due to a small distance between the
studied boundary surface and the source.
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Figure 5: Standard deviations for 3 source positions

The main question that remains now is to explain differ-
ences obtained in transmission loss according to excita-
tion conditions. It is well known that grazing waves are
detrimental to acoustic isolation. Moreover, if blocked
pressures applied to the panel tested are more impor-
tant for a same room pressure, this will inevitably lead
to a decrease of acoustic isolation. Hence, an increase in
the mean BDFI leads to a decrease of transmission loss.
However, when differences between two BDFI are low
compared to standard deviations, no conclusions can be
given. A high standard deviation is indeed related to a
boundary field that is not uniform, and with a partic-
ular distribution that can be more or less coupled with

the panel. Hence, for high standard deviations, the ex-
pected global tendency between the mean BDFI and the
transmission loss is not necessary verified.
Influence of source location over sound transmission of
a double panel is presented in Fig(6). Calculations are
made using the patch-mobility method presented in [4].
Great differences are observed with the tree source loca-
tions, even above the cut off frequency of 187Hz. This
confirms that the diffusivity is not perfect. Moreover,
the link between the BDFI and the transmission loss
that was expected is verified with these results. The
only exception is at 800Hz for the source position HP2,
but the higher standard deviation for this location due
to the direct field explains this singularity.
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Figure 6: TL of a double aluminum panel (2mm and
1.5mm thickness, separated by 3cm of air) for three

source positions

4.2 Experimental study

Sound transmission measurements with two source po-
sitions in an room with a volume of 80m3 and having a
cutoff frequency around 300Hz are presented in Fig(8).
Corresponding measured BDFI are also presented in
Fig(7). Except at low frequencies, transmission losses
are well related to the BDFI. Indeed, a higher mean
BDFI leads to a lower transmission loss. As discussed
previously, the BDFI increase can be explained by an in-
crease of grazing waves and correlated plane waves, and
these two physical phenomenons are known to reduce
the transmission loss.
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Figure 7: Measured BDFI with two source positions
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Figure 8: Measured Transmission Loss of a
plasterboard panel with two source positions

5 Conclusion

Several parameters can change the diffusivity of a bound-
ary sound field. The position of the surface on the wall
can be of some importance due to intensification zones
at the edges and in the corners. Loudspeaker location in
the room can also be an influent parameter if the direct
source contribution is important. Absorption material
distribution in the room, and diffuser position have also
an influence on the boundary surface diffusivity. In gen-
eral a slight absorption is required in reverberant rooms
to deacrease the cutoff frequency. However, an adding of
absorption also decreases the number of wave reflexions
in the room, leading hence in a decrease of the diffusiv-
ity.
The Boundary Diffuse Field Index presented in this ar-
ticle enables to study, either theoretically or experimen-
tally, the global diffusivity due to all these phenomenons
of a boundary sound field. Two particular aspects can
hence be analysed: the isotropy of the field character-
ized by a limit incidence angle, and the correlation of
incident waves.
The Boundary Diffuse Field Index can thus be employed
as a tool to characterize facilities used in transmission
loss measurements. A perfect emitting room must have
very low BDFI standard deviations for homogeneity rea-
sons of the boundary pressure field, and a mean BDFI
close to 2 to have a perfect isotropy of the boundary
pressure field. Finally, the study of sound transmission
realised in this article yielded to the following global
trend: higher the BDFI, lower the transmission loss.
This global trend is however not always verified in the
case of large BDFI standard deviations.
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