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A flue organ pipe can be excited in various acoustic modes by changing the air pressure supplied to
it. This research aims to reconstruct this behavior from the result of numerical flow simulation of a jet
deflected by sound and from physical modeling simulation of the total sound production system. In the
numerical flow simulation, motion of the jet in the pipe mouth was replicated: The jet emerges from
a flue and travels in a space where the air oscillates laterally to the jet direction. As a result, the jet
oscillates with the same frequency as the oscillation of the air i.e., sound. From the flow simulation, a
model of the jet deflection was developed. This model was then used as a model of the sound source in
the physical modeling simulation where not only the sound source but the resonance of the pipe is also
modeled in a set of differential equations with delayed feedback. The mode transition observed in the
physical modeling simulation was discussed by comparing with that experimentally observed.

1 Introduction

A flue organ pipe is normally operated in the funda-
mental resonance mode with foot pressure — air pres-
sure supplied to a pipe — that is fixed in a range from
500 to 900 Pa. A pipe, however, makes sound with the
pressure in a much broader range. If the pressure is
changed from a few tens Pa to 10 kPa, a pipe sounds in
several different oscillation regimes. As the pressure is
increased, the second and the third resonance modes are
excited. A pipe can sound with much smaller pressure.
In this case, the second and the first resonance modes
are excited. Transition among these oscillation regimes
is called overblowing behavior.

In this paper, overblowing behavior of a flue organ pipe
is simulated using a time-domain physical model of the
instrument. The critical part of the physical model is
a model of jet oscillation. This is developed from the
result of numerical flow simulation of a jet oscillated
by sound. How accurately overblowing behavior can be
simulated would be a barometer of how much we under-
stand the sounding mechanism of the flue instrument.

2 Theoretical model of jet oscil-

lation

Fletcher and Thwaites[1] proposed a model of a jet os-
cillated by sound. First we suppose that a jet emerges
from a flue and travels in a transversely directed acous-
tic flow field. The acoustic field deflects the jet laterally
and make it oscillate with the same frequency. We define
η(x, t) as the lateral displacement of the jet at distance x
from the flue exit at time t. Assuming a uniform acous-
tic field oscillating with angular frequency ω = 2πf , we
denote the acoustic displacement along the y-axis per-
pendicular to the jet direction as Y (t) = Y exp(iωt).
The jet displacement is modeled as

η(x, t) = Y (t)

[
1− exp(μx) exp

(
−iω

x

vph

)]
, (1)

where μ is the growth factor of an infinitesimal distur-
bance imposed on the jet and vph is the propagation ve-
locity of the disturbance. The first term in the bracket
in Eq. (1) indicates that the jet transversely oscillates
as a lump with Y (t). The second term implies that a
small disturbance −Y (t) is imposed on the jet at x = 0
(to meet the condition that no displacement of the jet is
allowed at the flue exit) and it grows exponentially with
factor μ and propagates downstream with velocity vph.

The growth factor μ and the propagation velocity vph

are parameters of this model. The growth factor μ
is determined by a stability analysis in Mattingly and
Criminale[2]. Because there is ambiguity in determin-
ing vph, we introduce a model parameter γ in this paper,
which is defined by

vph = γvjet, (2)

where vjet is the jet velocity.

3 Flow simulation

Coltman examined the motion of a jet oscillated by
sound experimentally[3]. In his setup, a pair of speakers
driven in anti-phase generate an acoustical cross flow
in a channel where a jet travels. The same experi-
ment was performed numerically in this paper with the
method shown in Adachi[4]. The incompressible Navier-
Stokes equations were solved in a two-dimensional do-
main representing the pipe mouth using the finite ele-
ment method. Sound field, that is the oscillating lumped
air, was realized by a condition imposed on the upper
and lower boundaries. Instead of the pair of speakers
in Coltman’s experiment, sinusoidally oscillating acous-
tic velocity vext(t) = vext sinωt on these boundaries was
imposed.

In the simulation, several parameters were specified as
follows: The flue thickness h was set to 0.25 or 0.5 mm.
Tophat (or constant) velocity profile at the flue was as-
sumed. The initial jet velocity v0 was from 5 to 60 m/s
and The sound frequency f was changed among 200,
500 and 800 Hz. Figure 1 shows an example of a jet
numerically simulated.

From the simulated jet, displacement η normalized by
acoustic displacement Y was measured at several differ-
ent distances of x from the flue. The phase and ampli-
tude of η/Y are plotted in Fig. 2 as functions of two
Strouhal numbers Stx and Sth, which are defined by
Stx = fx/v0 and Sth = 3πfh/2v0, respectively. The
data of the phase and amplitude were fitted to surfaces
also shown in Fig. 2 (a) and (b). The surfaces provide
η/Y as functions of Stx and Sth. A jet deflection model
was thus developed from the numerical experiment.

4 Sound synthesis

In physical modeling, sounding of a flue pipe is described
by a few variables. These are the jet displacement at the
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Figure 1: (a) Schematic illustration of a jet deflection
experiment. (b) An oscillating jet numerically

simulated.

upper labium η(t) ≡ η(l, t), where l is the distance be-
tween the flue and the upper labium or the cutup length,
volume flow into the pipe caused by the jet Ujet(t), pres-
sure p(t) and volume flow U(t) at the mouth, and those
at the entrance of the pipe pp(t) and Up(t). The pos-
itive direction of the volume flow is here regarded to
be towards the pipe. These variables are schematically
illustrated in Fig. 3.

The resonance of a pipe is characterized by the input
impedance defined by Zin(ω) = pp(ω)/Up(ω). This can
be calculated with an acoustic transmission line model
from the shape of the pipe. In time domain, the pipe
resonance is characterized by a pressure reflection func-
tion r(t) that is the inverse Fourier transformation of
the reflection coefficient

R(ω) =
Zin(ω)− Z0

Zin(ω) + Z0

, (3)

where Z0 = ρc/Sp is the characteristic wave impedance
of a pipe having cross sectional area Sp. The pressure
and the volume flow at the entrance of the pipe satisfy
the following convolution integral:

pp(t) = Z0Up(t)

+

∫
∞

0

ds r(s) {pp(t− s) + Z0Up(t− s)} . (4)

At the entrance of the pipe, the volume flow Ujet(t)
caused by the air jet is injected as well as the acous-
tic volume flow through the mouth U(t). The flow and
momentum conservations are satisfied here:

Up(t) = U(t) + Ujet(t), (5)

pp(t) = p(t) +
Ṁjet(t)

Sp

, (6)

where Ṁjet(t) is momentum flux along the jet. Equa-
tion (6) implies that sudden deceleration of the jet re-
sults in force acting on the entrance. We assume that
the jet has a bell-shaped velocity profile of v(y) = vc(l)
sech2(y/b(l)) at the upper labium, where vc(l) is the jet
center velocity and b(l) is the half thickness of the jet at

(a) Phase

(b) Amplitude

Figure 2: Data of η/Y obtained in numerical
simulations and fitting surfaces as functions of two

Strouhal numbers Stx and Sth.
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Figure 3: Flows and pressure near the pipe mouth.

x = l. Ujet(t) and Ṁjet(t) are calculated as follows:

Ujet(t) = W

∫
hoff

−∞

dyv(y)

= Wb(l)vc(l)

(
1− tanh

η(t)− hoff

b(l)

)
, (7)

Ṁjet(t) = ρW

∫
hoff

−∞

dyv2(y)

=
2

3
ρWb(l)v2

c (l)

[
1−

(
1 +

1

2
sech2 η(t) − hoff

b(l)

)

× tanh
η(t)− hoff

b(l)

]
, (8)

where hoff is the offset of the upper labium position to-
wards the +y-direction from the center line along which
the jet travels.

Sound is radiated from the pipe mouth. As pointed out
in Fabre et al.[6], this process is nonlinear because of
the high sound pressure level and of the existence of the
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upper labium, from which turbulence occurs. As shown
in Skulina[7], the total radiation impedance i.e., the ra-
tio of p to −U becomes the sum of the ordinary linear
radiation impedance Zlin and an additional non-linear
contribution Znl. Zlin in the low frequency approxima-
tion becomes

Zlin =
iωρΔL

Sp

, (9)

where ΔL is the end correction of the pipe mouth. This
can be 2.3Sp/π

√
Sm, where Sm is the area of the mouth[8].

On the other hand, Znl is modeled in Disselhorst and
Van Wijngaarden[9] as

Znl = β̂MSt
1

3

m

ρc

Sm

, (10)

where β̂ is a model parameter we here set to 3.0, M is
a Mach number U(t)/Smc, and Stm is a Strouhal num-
ber defined by Stm = f

√
4Sm/π/U(t). Because it is not

easy to take the frequency dependence of Znl into consid-
eration, we fix the frequency to 660 Hz in the simulation
of a flue organ pipe. The time-domain representation of
the radiation from the mouth then becomes

−ρΔL

Sp

U̇(t) = p(t) + ZnlU(t). (11)

The jet in a flue organ pipe has a tophat velocity profile
when it emerges from the flue. The tophat profile grad-
ually changes to a bell-shaped profile as the jet travels.
Also the jet gradually blends into the surrounding air.
The center velocity vc(x) becomes smaller and the half
thickness b(x) becomes larger in the mouth. The initial
jet velocity v0 is calculated from the pressure supplied to
the pipe p0 with v0 =

√
2p0/ρ. The initial half thickness

b0, supposing we may extend the sech2 velocity profile
up to the flue exit, becomes b0 = 3h/4 from the momen-
tum conservation at the flue exit. Assuming a constant
semi angle φ of the jet spreading, we have

b(x) = b0 + x tan φ, (12)

vc(x) = v0

√
b0

b(x)
. (13)

As discussed in Sec. 2, the theoretical model of the jet
oscillation expressed by Eq. (1) assumes a jet having a
constant velocity vjet and half thickness b. To apply this
model to the actual jet, we need averaging of vc(x) and
b(x) over the cutup length l, which is defined here by

b = b(l/2), (14)

vjet = l
/∫ l

0

dx

vc(x)
. (15)

If the jet velocity at the flue exit v0, the cutup length
l and the flue thickness h are specified, η/Y can be ex-
pressed as a function of ω from the theoretical jet os-
cillation model [Eq. (1)] with Eqs. (2), (14) and (15).
In the numerical model, the phase and amplitude of
η/Y (ω) are given by fitting surfaces in Fig. 2, as the
two Strouhal numbers Stx and Sth are now functions of
ω only. Because U(t) = −SmẎ (t), we have η/U(ω) in

frequency domain in any cases. The time-domain repre-
sentation of a jet oscillation model thus have a general
form:

η(t) =

∫
∞

0

dsG(s)U(t − s), (16)

where G(s) is a kernel function that is the inverse Fourier
transformation of η/U(ω) provided by either model. The
models were constructed with an assumption of the in-
finitesimal magnitude of η(t). In the simulation with
Eq. (16), the magnitude of η(t) sometimes became un-
realistically too large. To prevent this situation, we in-
troduced a factor α exp(−|η(t)|/b(l)) to Eq. (16), where
α was set to 0.2 after a preliminary sound simulation.

If all the geometrical parameters of the pipe are known
and the blowing pressure p0 is given, we can simulate
sounding of a flue pipe. One time step in the simulation
can be completed as follows: With Eq. (16), η(t) can
be calculated from the past data of U(t). Ujet(t) and

Ṁjet(t) are calculated using Eqs. (7) and (8). U(t) is
calculated with Eq. (11). Up(t) is obtained from Eq. (5).
With Eq. (4), we can calculate pp(t). Finally, p(t) is
obtained from Eq. (6).

5 Mode transition estimation

By changing the blowing pressure p0 from 30 Pa to 10
kPa, sound generated by an E4 flue organ pipe exam-
ined in Fletcher[10] was synthesized with the method
presented in Sec. 4, Table 1 lists the simulation parame-
ters including the dimensions of this pipe. The offset of
the upper labium was estimated from the measurement
of the jet velocity profile shown in Fig. 6 of Fletcher[10].
The same jet spreading angle φ obtained experimentally
in Thwaites and Fletcher[11] was used.

In the theoretical model, model parameter γ should be
determined. As γ controls jet velocity vjet, it changes
the blowing pressure at which transitions among the os-
cillation modes occur. After a preliminary simulation,
γ was determined to be 0.35 so that the transition be-
tween the normal oscillation regime and the overblow
regime in the second mode occurs at around p0 = 1.6
kPa.

Table 1: Simulation parameters

Symbol Parameter name Value
L pipe length 44 cm
W mouth width 4 cm
l cutup length 1 cm
Sp pipe cross-sectional area W 2 = 16 cm2

Sm mouth area Wl = 4 cm2

h flue thickness 0.25 mm
hoff upper labium offset −0.9 mm
φ jet spreading semi-angle 6.3◦

(tanφ = 0.11)
α factor to Eq. (16) 0.2
β coefficient in Eq. (??) 0.625
γ coefficient in Eq. (2) 0.35

For comparison with the mode transition experimen-
tally observed, the sound pressure level of each harmonic
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component at distance R = 1 m from the pipe mouth
should be estimated. By assuming monopole radiation
from the pipe mouth, the sound pressure amplitude and
the level of the n-th harmonic component become

pout =
ρωUn

4πR
, (17)

SPL = 20 log(pout/20μPa), (18)

where Un is the acoustic volume flow amplitude of the
n-th harmonic at the mouth.

The fundamental frequency and the levels of the har-
monic components were obtained as functions of p0. The
estimated mode transitions with the theoretical and nu-
merical jet oscillation models are shown in Figs. 4 (a)
and (b), respectively. The lower panel in each figure
plots the fundamental frequency divided by the mode
number of the oscillation. The upper panel shows the
sound pressure levels of the harmonic components. The
experimental result of the mode transition, that is Fig. 16.17
in Fletcher and Rossing[12], is also shown in Fig. 4 (c)
for comparison. This is the target for the simulations.
The general tendency of the mode transitions simulated
with both the models is in good agreement with that
observed experimentally. When the blowing pressure p0

is increased from 30 Pa, an oscillation regime in the first
resonance mode first appears. After a silence, a regime
in the second mode appears. These two regimes are
called underblows. The second mode oscillation sud-
denly turns to another regime in the first mode as p0

is increased and it lasts until p0 becomes larger than 1
kPa. This is called normal oscillation regime. In the
higher p0 region, there are two regimes: one in the sec-
ond resonance mode and the other in the third mode.
These are called overblows.

In the transitions among the normal and overblow regimes,
hysteresis is observed and also simulated. This is the
phenomenon in which two oscillation regimes are over-
lapped in their marginal ranges of the blowing pressure.
Which oscillation regime actually appears in this range
depends on the history of the generated sound. If an
oscillation regime is excited at a certain p0 and it is
changed to go into a range where two regimes exist,
this regime tends to remain. Transition to the other
regime occurs after p0 go beyond the range. Within
each regime, the fundamental frequency is gradually in-
creased as p0 increases. This is well simulated with both
the jet oscillation models. This phenomenon can be
found commonly in flue instruments and is explained
in Fletcher and Rossing[12] On the transition from the
normal regime to the overblow in the second mode, the
fundamental frequency of the sound jumps almost twice,
but it is smaller than twice. Similarly, the frequency
jump on the transition between the second and third
modes is smaller than 1.5 that is expected from the ra-
tion of the mode numbers. These phenomena are well
simulated both with the theoretical and numerical mod-
els.

Let us compare the simulated mode transitions with the
experiment in detail. With the theoretical model, the
normal oscillation regime is simulated for p0 from 320
Pa to 1.6 kPa. With the numerical model, it is simu-
lated for p0 from 180 Pa to 890 Pa. As compared with

the experiment, the lower limit of p0 for the normal os-
cillation regime is better simulated with the numerical
model. The upper limit of p0 is better simulated with
the theoretical model, but this is trivial because γ was
set to 0.35 so that the transition occurs near 1.6 kPa.
If γ is changed, the transition point is easily changed.
The beginning of the overblow regime in the second res-
onance mode is well simulated with both the models.
In the experiment, this regime lasts until p0 reaches 10
kPa, but it is simulated to disappear at around 5 kPa
with both the models. The overblow in the third mode
is better simulated with the theoretical model. With
the numerical model, it appears for p0 as small as 2.8
kPa. The pressure ranges for the two underblows are
better simulated with the numerical model. With the
theoretical models, these are shifted towards the larger
pressure side.

The sound pressure levels are much larger in the sim-
ulated mode transitions than in the experiment. Es-
pecially for the underblow regimes, the level difference
between the simulations and the experiment is larger
than 20 dB. This means that the oscillating jet excites
the pipe oscillation much less efficiently in the under-
blow regimes. This may imply that the assumption of
the jet velocity profile is no longer satisfied for the os-
cillating jet with a larger phase delay. In Nolle[13], it
is pointed out that the oscillating jet is not a simply a
time-delayed, broadened, and amplified version of the
jet near the flue. In our numerical flow simulation, it is
also observed that the velocity profile of the jet is con-
siderably distorted and deviates from the shape of sech2

as it is oscillated by sound.

The synthesized sound spectra in Figs. 4 (a) and (b) are
also different from that observed in the experiment in
Fig. 4 (c). In the simulated normal oscillation regimes,
the sound pressure levels of the lower harmonics are al-
ways larger than those of the higher harmonics. In the
normal regime observed in the experiment, the level of
the third harmonic is larger than that of the second har-
monic for larger p0. This may imply that the offset of
the upper labium hoff is effectively smaller in the ex-
periment than the assumed value of −0.9 mm, because
the general tendency is that a smaller offset results in
depression of the levels of the even harmonics[14].

6 Conclusion

Oscillations of a jet traveling in a transversely directed
acoustic field were numerically simulated for various dif-
ferent values of the jet initial velocity, the sound fre-
quency and the flue thickness. From the results of this
numerical experiment, a new jet oscillation model was
developed. Using physical modeling sound synthesis,
the mode transition of an E4 organ flue pipe was esti-
mated and compared with that simulated with an ex-
isting jet oscillation model theoretically developed and
with that experimentally observed.

Although there are several discrepancies between the
observed and estimated transitions, the basic proper-
ties of the mode transition can be successfully simulated
both with the theoretical and numerical jet oscillation
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Figure 4: Mode transition diagrams: (a) that estimated with the theoretical jet oscillation model, (b) that estimated
with the numerical model, and (c) that observed in experiment.

models. In particular, the blowing pressure ranges for
all the oscillation regimes appearing in the experiment
are fairly correctly estimated by the numerical model
without any adjustment of the model parameters relat-
ing to the phase of the jet oscillation. The theoretical
model can simulate the pressure ranges for the normal
and overblow regimes correctly by virtue of adjustment
of a model parameter, but it fails to simulate the correct
ranges for the underblows.
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