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sassaf@estaca.fr

Acoustics 08 Paris

7815



A numerical study to investigate the effects of temperature on the diffuse sound transmission loss (TL) of 
sandwich plates is presented. The numerical prediction tool used is based on a finite element formulation for the 
sandwich plate coupled to a boundary element method for the acoustic medium. The plate formulation is derived 
from Kirchhoff’s theory for the elastic faces and Mindlin’s theory for the core. The frequency-temperature 
dependence of the viscoelastic material properties are taken into account using an experimentally derived 
viscoelastic constitutive law. The results presented deal with a laminated glass subjected to a diffuse sound field. 
It is found that the dip of the TL curve at the coincidence frequency of the plate is totally removed for 
temperatures where this frequency is in the transition region of the used viscoelastic material. Indeed, the relative 
low value of the storage modulus and the high value of the loss factor in this region, induce high transverse shear 
deformations of the viscoelastic interlayer and thus high energy losses. 

1 Introduction 

Vibration damping and noise control by means of sandwich 
structures with viscoelastic layer is commonly used in 
many industries [1]. In such structures, the main energy loss 
mechanism is due to the transverse shear of the viscoelastic 
core. However, the mechanical properties of viscoelastic 
materials vary with frequency and temperature. In this 
paper the transmission loss factor is used to analyze the 
effects of temperature and frequency on the vibro-acoustic 
response of sandwich plates. First, the variation of the 
mechanical properties of viscoelastic materials with 
temperature and frequency is described. Then, the 
numerical method used in this study is outlined. This 
method is based on a finite element formulation for the 
sandwich plate coupled to a boundary element method for 
fluid loading. Compared to the transmission loss 
computation based on infinite plate theory [2-4] or simply 
supported plate theory [5], the proposed approach has the 
following advantages: arbitrarily shaped three-layer plates 
with various boundary conditions can be handled; the 
acoustic excitation considered is a diffuse field noise which 
is the basis of standardized transmission loss 
measurements; fluid loading can be accounted for. The 
numerical results in term of noise transmission loss through 
a laminated glass are presented and the effects of 
temperature are discussed. 

2 Characterisation of viscoelastic 
materials 

A Viscoelastic material is characterized by possessing both 
energy storage and energy dissipation capability. For a 
linear viscoelastic material, the elastic and shear moduli are 
represented by complex quantities. The real part relates to 
the elastic behavior and the imaginary part relates to the 
material’s viscous behavior and indicates its energy 
dissipation capability. The mechanical properties of 
viscoelastic materials vary considerably with frequency and 
temperature [6]. At high frequencies and/or low 
temperatures (glassy region) the material is stiff and 
relatively undamped. At low frequencies and/or high 
temperatures (rubbery region), the material is soft and the 
damping is small. At intermediate frequencies and 
temperature (transition region) the stiffness decreases 
rapidly with increasing temperature and the damping is 
highest. Different measurement techniques of the 
viscoelastic material properties are described in the 
literature [7-9]. Considering the temperature-frequency 

equivalence principle [10], measurements of the storage 
modulus and the loss factor as a function of frequency and 
temperature can be collapsed onto one master graph. This is 
achieved by plotting the data against a reduced frequency 
parameter, Tωα , where ω  is the actual frequency and 

Tα is an appropriate function of temperature. The 
viscoelastic material properties are thus fully characterized 
by a master curve at a nominal temperature and a law for 
the variation of the shift factor Tα  with temperature. The 
core of the laminated glass used in this study is a PVB 
material. Its master curve, supplied by Saint Gobain Glass, 
is shown in Fig.1. A model of the following form is used 
for the temperature shift factor 
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where 1c , 2c and 0T are material constants determined 
experimentally. 
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Fig.1 PVB material master curve 
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3 Formulation of sandwich plate 
equation 

In the following, the finite element formulation for the 
transmission loss computation of the sandwich plate is 
outlined. Suppose that the sandwich plate is placed in an 
infinite rigid plane baffle and excited by an external 
acoustic field. The different layers are assumed to be in the 
( , )x y  reference plane. The middle surface of the plate is 
assumed to be in 0z = . The baffle separates two semi-
infinite fluid domains, the excitation domain V −  ( 0z < ) 
and the receiver domain V + ( 0z > ). In order to determine 
the response of the sandwich plate certain assumptions are 
made in the formulation: (1) normal sections in each layer 
before deformation remain plane and continuous after 
deformation; (2) the transverse displacement remains 
constant throughout the thickness of the plate; (3) the face-
layers are elastic and isotropic and they are subjected to 
extension, bending and in-plane shear deformations; (4) the 
core is subjected to extension, bending, in-plane shear 
deformations and transverse shear deformations; it is 
linearly viscoelastic with complex moduli in the frequency 
domain; (5) all displacements are assumed to be small and 
perfect continuity at the interfaces is assumed.    
According to these assumptions, a linear displacement field 
is defined for each layer and the continuity of the 
displacement is enforced at the layer interfaces. The 
displacement field is thus given by 
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where ,i iu v  are the in-plane displacements of the faces 
( 1,2)i =  and of the core ( 0)i = , ( , )w x y is the transverse 
displacement of the plate, 0 0, ( 1,2)i iu v i = are the in-plane 
displacements of the mid-surfaces of the top and bottom 
faces, xϕ and yϕ are the shear rotations of the normal to the 

core middle plane about x and y axes, iz are the z 
coordinates of the mid-plane of the faces, 0h is the thickness 
of the core, d is the distance between the mid-planes of the 
faces, and m 1 2( ) / 2z z z= + . m m,u v are the mean mid-
plane displacements defined by   

 10 20 10 20
m m,

2 2
u u v vu v+ += =  (2) 

and r r,u v  are the relative mid-plane displacements defined 
by 

 r 10 20 r 10 20,u u u v v v= − = −  (3) 

The stress field is given by Hook’s law as follows 
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where iε and iσ  are respectively the in-plane strain and 
stress vectors in each layer, 0γ and 0τ  are the transverse 
shear strain and stress vectors in the core. iE  and sE are the 
elasticity matrices. For isotropic materials, the components 
of the elasticity matrices are 
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where iE  is the Young’s modulus and iν  the Poisson’s 
ratio of the layer i. For the linear viscoelastic material, the 
Young’s modulus is represented in complex form and is 
frequency-temperature dependent 

0 ( )= ( )(1+i ( ))v vE ,T E ,T ,Tω ω η ω  

where vE is the storage modulus, vη is the loss factor of the 

viscoelastic material and i 1= − . 
The strain and kinetic energies of the sandwich plate can be 
written as 

 T1 ,
2 i iU d

Ω
Ω= ∫ σ ε  (6) 

 2 2 21 ( ) ,
2 i i i iV u v w d

Ω
ρ Ω= + +∫ & & &  (7) 

where iρ is the mass density for the i-th layer and the dot 
symbol (.) stands for time derivation. , ,i i iu v w& & &  are the 
components of the velocity vector. Substituting Eqs. (1) and 
(4) into Eqs. (6) and (7) and integrating through the plate 
thickness yields the strain and kinetic energies in terms of 
the mean mid-plane displacements of the faces , ,m mu v the 
relative mid-plane displacements r r,u v and the transverse 
deflection w . 
The discrete forms of the strain energy and the kinetic 
energy, obtained by following conventional finite element 
procedure [11], give the stiffness ( K ) and mass ( M )  
matrices of the sandwich plate as 

 T 2 T
n n n n

1 1,
2 2

U V ω= = −u Ku u Mu  (8) 

where nu  is the nodal dof vector. The details of their 
derivation are given in the fourth chapter of reference [12]. 
The work done by the acoustic pressure on the plate is 

 ( ) .b
A A

W p p wds p wdS− += − +∫ ∫  (9) 

Acoustics 08 Paris

7817



 

where A  is the area of the plate, b i rp p p= +  is the 
blocked pressure which is the sum of the incident pressure, 

ip , and the reflected pressure, rp , on the incident side 
when the plate is considered as a hard wall. The variables 
p+ and p− are respectively the radiated pressure in the half 

spaces 0z >  and 0z < . The radiated pressure is given by 
the classical Rayleigh integral 

 , 2 ,in ,
A

p wGdS Vρω+ − + −= −∫  (10) 

where ρ is the density of the fluid and 
2

ikreG
r

−

=
π

is the half-

space free-field Green’s function satisfying 0G
n

∂ =
∂

on the 

baffle. Substituting Eq. (10) into Eq. (9) gives 

 22 .b
A A A

W wGwdS dS p wdSρω= +∫ ∫ ∫  (11) 

The discrete form of the potential loading is obtained by 
using a boundary element method [13] 

 2 T T
n R n n ,W ω= +u Z u u F  (12) 

RZ and F are respectively the radiation impedance matrix 
and the source vector resulting from the acoustic excitation. 
To derive the governing equation of motion for the 
sandwich plate, the variational formulation is applied in the 
following form 

 0,V U Wδ δ δ− + =  (13) 

where Vδ , Uδ and Wδ  are respectively, the virtual 
variations of kinetic energy, strain energy and the work 
done by the external loads. Substituting Eqs. (8) and (12) 
into Eq. (13) leads to the following equation of motion 

 2
R n( , ) ( ( )) ( , ) ( ).T Tω ω ω ω ω⎡ ⎤− + =⎣ ⎦K M Z u F  (14) 

The TL through the sandwich plate is defined by the ratio 
of the incident sound power to the transmitted sound power. 
The transmitted sound power is given by 

 * *
t

1 Re Im ,
2 2A A

p v dS p w dSωΠ + += =∫ ∫  (15) 

where v is the normal velocity of the sandwich plate ( *  
denotes the complex conjugate). Substituting Eqs. (10) into 
Eq. (15) gives 

 
3 3

* T *
t n R nIm Im( ).

2 4A A
wGw dSdSω ωΠ ρ= − = −∫ ∫ u Z u (16) 

4 Numerical results 

In this section, the acoustical response of a laminated glass 
is analyzed. The objective is to investigate the effects of 
temperature on the noise transmission loss. The laminated 
glass is 1.48m long and 1.23m  wide with simply 
supported boundary conditions. The characteristics of the 
faces and of the viscoelastic core are as follows 
h1,2=4mm; E1,2=72 GPa; ν1,2=0.22; ρ1,2=2500 kg/m3 
h0=0.76mm; ν0=0.5; ρ0=1000 kg/m3 

The PVB material properties are supplied by Saint Gobain 
Glass (Fig.2 and Fig.3). The surrounding fluid is air with 
density 31.2 kg/mρ = and sound speed 340m/sc = . The 
TL of the sandwich plate is investigated in the frequency 
range [50-5000 Hz] and at the following values of 
temperature 15, 20, 50 and 60°C. 
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Fig.2 Shear modulus of the PVB material. 
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Fig.3 Loss factor of the PVB material. 

The variation of the shear modulus and the loss factor of the 
PVB material with respect frequency and temperature is 
shown in Fig.2 and Fig.3. These figures show that with 
increasing temperature, the shear modulus decreases and 
the transition region moves toward the high frequencies.  
The computed TL with the proposed formulation is 
presented in Fig.4. It is clearly seen that the variation of the 
temperature affects mainly the TL curve at the coincidence 
frequency region. At low temperatures (15, 20°C), the PVB 
material is characterized by low loss factor values in the 
frequency range of interest. Consequently, the dip of the TL 
curve caused by wave matching between incidence sound 
wave and structural wave at the coincidence frequency is 
clearly observed. At 50°C, this coincidence frequency is in 
the transition region of the viscoelastic material. In this 
transition region, the relative low value of the shear 
modulus increases the shear deformation in the viscoelastic 
core and the high value of the loss factor increases the 
energy dissipation. The consequence is that the TL dip is 
totally removed at the coincidence frequency. At 60°C the 
coincidence frequency becomes in the lower limit of the 
transition region and thus the dip reappears. 

Acoustics 08 Paris

7818



 

102 103
0

10

20

30

40

50

60

Frequency (Hz)

Tr
an

sm
iss

io
n 

Lo
ss

 (d
B

)

 

 

15°C

20°C
50°C

60°C

 
Fig.4 Transmission loss of the laminated glass

5 Conclusion 

In this study, a laminated glass with viscoelastic core was 
investigated by using a numerical tool based on a finite 
element formulation for the sandwich structure coupled to a 
boundary element method for fluid loading. The frequency-
temperature dependence of the viscoelastic material 
properties was taken into account using an experimentally 
derived master curve and using the complex moduli 
approach. The vibroacoustic response of the sandwich plate 
was analyzed in the frequency range [50-5000 Hz] and at 
15, 20, 50 and 60°C. It was found that the dip of the TL 
curve at the coincidence frequency is totally removed when 
this frequency is in the transition region of the viscoelastic 
material. 
The presented method could be used in a parametric study 
and/or optimization in order to improve the vibroacoustic 
characteristics of sandwich plates taking into account both 
frequency and temperature dependence of the viscoelastic 
material properties. 
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