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This work presents a modal approach to evaluate the transversal modes and wavenumbers for dissipative 
mufflers with mean flow. The method is based on the division of the transversal section of the muffler into 
subdomains, for which two simple sets of modes are considered. The first set of modes satisfies the condition of 
zero pressure at the common boundary between subdomains, while the second fulfils the condition of zero 
derivative in the direction normal to this boundary. From these sets, a substructuring procedure is applied that 
provides the final modes of the complete cross section, considering the presence of absorbent material, a 
perforate and mean flow. The technique avoids iterative schemes associated with the nonlinear characteristic 
equation found, for instance, in the analytical modelling of perforated dissipative circular mufflers. Once the 
final transversal modes have been calculated, the mode matching technique is applied at the geometrical 
discontinuities to completely define the acoustic field inside the muffler. The acoustic attenuation is then 
predicted by means of the transmission loss. Comparison with results available in the literature shows good 
agreement. The attenuation of a dissipative muffler is presented, including the presence of a perforated duct and 
mean flow. 

1 Introduction 

Mufflers used in the exhaust system of internal combustion 
engines are subjected to gas flow that can be approximately 
modelled by uniform mean flow for some configurations. 
Due to the need to ensure adequate noise attenuation across 
a wide frequency band, it is advisable to incorporate both 
reactive elements (geometry changes) with satisfactory low 
frequency acoustic behaviour and dissipative elements 
(absorbent materials) that provide noise attenuation for 
higher frequencies. 
The modelling of perforated pipes is usually carried out by 
an acoustic impedance [1]. If there is no mean flow, 
impedance models fitted from experimental data provide a 
fairly close reproduction of the muffler behaviour. The 
presence of grazing mean flow modifies the impedance in 
the absence of flow [1, 2] and the different models 
developed give a reasonable approximation to the problem. 
The presence of absorbent material on one side of the 
perforated surface also modifies the acoustic impedance, 
according to Kirby and Cummings [3], for which allowance 
should be made. 
Due to their versatility, for a long time classical numerical 
methods such as the finite element method (FEM) and 
boundary element method (BEM) have been in use for the 
acoustic analysis of mufflers [4, 5, 6, 7]. However, their 
high computational cost for three-dimensional analysis 
prohibits their use in many practical applications. When 
sound wave propagation is three-dimensional, the use of 
modal methods has great advantages from the 
computational standpoint and is therefore a suitable 
analysis option. In particular, the mode matching method is 
especially useful, the technique being based on the 
transversal modal solution of each of the components 
forming the muffler and evaluating the amplitude of the 
waves by imposing the continuity conditions of the pressure 
and axial velocity at the geometrical discontinuities 
between the muffler components. The continuity required 
in the acoustic fields is imposed by the weighted residual 
method, in which the weighting functions are the 
transversal modes themselves [8]. The use of separation of 
variables allows the pressure field to be expressed in each 
component as a modal expansion in which each term is the 
product of an axial mode and a transversal mode that may 
be evaluated according to the geometrical complexity of the 
transversal section.  

Many authors have used the mode matching method to 
study the acoustic behaviour of reactive mufflers with 
simple cross section, in which the transversal modes are 
defined analytically. Selamet et al. studied expansion and 
flow-reversing chambers, including the effect of different 
inlet/outlet positions and extended ducts, without 
considering the presence of mean flow [8, 9, 10]. 
With simple geometries such as the circular concentric 
resonator, the mode matching method has been used to 
solve problems that include a perforated duct. The solution 
of the associated characteristic equation allows transversal 
and axial wavenumbers to be calculated, although their 
highly nonlinear nature complicates the process (this 
method will hereinafter be referred to as the direct method). 
The same methodology can also be applied to the case of 
uniform mean flow with absorbent material in the chamber. 
However, obtaining all the necessary modes from the 
characteristic equation may on occasions be difficult [11, 
12]. For more complex geometries, the direct method 
cannot be used to calculate the analytical transversal modes, 
but this is possible with the finite element method in two 
dimensions [13]. Additionally, a modal methodology has 
recently been presented that allows the calculation of the 
transversal modes, incorporating both perforated elements 
and absorbent materials [14]. The method is based on using 
two simple sets of modes for the subdomains associated 
with a cross section, and provides a good convergence. This 
paper presents its extension to the case of the presence of 
uniform mean flow. After the calculation of transversal 
modes for each of the components forming the muffler, the 
mode matching method is applied to assess the acoustic 
attenuation performance of the muffler.  

2 Substructuring method 

2.1 Formulation of the acoustic problem 

The following hypotheses are assumed: (1) An OXYZ 
Cartesian reference system will be used in which the OZ 
axis is the muffler axial direction; (2) the muffler can be 
divided into components with uniform cross section; (3) the 
transversal section of each component can also be divided 
into disjoint subdomains connected either directly or by 
perforated elements; (4) the medium of propagation in each 
transversal subdomain (air or absorbent material) is defined 
by its acoustic impedance and wavenumber; (5) the 
perforated duct will be modelled by acoustic impedance Zp; 
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and (6) the uniform mean flow in each subdomain is known 
and it is associated with the axial direction. 
To obtain the pressure field inside the muffler, the mode 
matching method is used. This requires the previous 
evaluation of the transversal modes associated with the 
muffler components, and then matching at the geometrical 
discontinuities. The solution of the differential equation in 
each component can be expressed in terms of the modes 
associated with the transversal section. In this paper a 
methodology is proposed based on modal synthesis which 
will allow the transversal modes to be obtained in the case 
of complex geometries that include absorbent materials and 
perforated ducts with uniform mean flow. 
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Absorbent material
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Air
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X
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Modes p = 0Modes ∇ p = 0

 
                          (a)                                           (b) 

Fig. 1 (a) Muffler and subdomains considered for the 
application of the component mode synthesis approach. (b) 
Substructuring scheme used to calculate transversal modes. 

Although the methodology can be applied to other 
geometries, the scheme shown in Fig. 1 (a) is considered to 
facilitate the presentation, consisting of two subdomains 
connected by a perforated duct. The medium of propagation 
in the central duct is assumed to be air and in the duct there 
is uniform axial flow in the direction OZ. The lateral 
chamber contains an absorbent material. To expand the 
pressure in each of the two subdomains, two bases will be 
used, as seen in Fig. 1 (b). The first set of modes is obtained 
assuming that in the boundary associated with the 
perforated duct the derivative of the pressure in the normal 
direction is zero, while the second set is computed with 
zero pressure at the perforated interface. To establish the 
coefficients of the pressure expansion it will be necessary to 
satisfy the acoustic conditions associated with the 
perforated element. 
If temporal variation is assumed to be harmonic, sound 
propagation in the subdomains A and B is given by 
equations [1] 

 ( )
2 2 2

2 2
0 02 2 21 2 j 0A A A A

A
p p p pM M k k p
x y z z

∂ ∂ ∂ ∂+ + − − + =
∂ ∂ ∂ ∂

 (1) 

 2 2 0B Bp k p∇ + =%  (2) 

where ∇2 is the Laplacian operator, pA and pB are the 
complex acoustic pressure amplitudes in each subdomain, 
k0 is the wavenumber defined by ω /c0, c0 being the speed 
of sound, ω the angular frequency, k%  the complex 
wavenumber in the absorbent material and M the Mach 
number associated with the uniform axial flow, defined by 
U0/c0, U0 being the mean flow velocity. 
If the transversal section is uniform throughout the 
component, by using separation of variables the pressure 
amplitude at any point in the section can be expressed by: 

( ) ( ) ( ) ( )
( ) ( )

je ;z

xy
Ak zxy xy
xy
B

x, y x, y A
p( x, y,z ) x, y x, y

x, y x, y B
− ⎧Ψ ∈⎪=Ψ Ψ = ⎨Ψ ∈⎪⎩

(3) 

where Ψxy denotes a transversal pressure mode and kz the 
axial wavenumber. If Eq. (3) is added to Eq. (1) and Eq. (2) 
the axial mode can be eliminated, so that 

 ( )2 2 2 2
0 02 1 0xy xy

A z z Ak M k k M k⎡ ⎤∇ Ψ + − − − Ψ =⎣ ⎦
 (4) 

 ( )2 2 2 0xy xy
B z Bk k∇ Ψ + − Ψ =%  (5) 

Eq. (4) can also be expressed as 
 2 2 0xy xy

A A,t Ak∇ Ψ + Ψ =  (6) 

where kA,t is the transversal wavenumber associated with 
the transversal mode in subdomain A, which is related to 
the axial wavenumber (of order s) by 

 ( )( ) ( )2 2 2 2
0 0 1 1z ,s A,t ,sk M k k M k M= − ± − − −  (7) 

The pressure field in the component can be expressed by 
the series expansion 

 ( ) ( )j j

0
e ez ,s z ,sk z k zxy xy

s s s s
s

p x, y,z C C
+ −∞

− −+ + − −

=

= Ψ + Ψ∑  (8) 

where 
z ,sk +  and 

z ,sk −  are the progressive and regressive 
waves, respectively, in the component, and 

sC +  and 
sC −  are 

the corresponding wave amplitudes. 

2.2 Computation of transversal modes 

Obtaining the modes of the complete transversal section 
requires imposing the conditions on all the boundaries of 
the subdomains of which it is composed. As all the modes 
utilised satisfy the conditions in the external boundary, 
except at the interface with the perforated element, to reach 
the solution it will only be necessary to impose the 
perforated impedance Zp on the corresponding interface. 
In this section, a formulation will be presented for obtaining 
the transversal modes of a component formed by various 
subdomains connected by a perforated element. Transversal 
pressure in subdomains A and B can be expressed by 

 
0 1

xy xy ,u u xy ,p p
A A,r A,r A,r A,r

r r
q qφ φ

∞ ∞

= =

Ψ = +∑ ∑  (9) 

 
0 1

xy xy ,u u xy ,p p
B B,r B,r B,r B,r

r r
q qφ φ

∞ ∞

= =

Ψ = +∑ ∑  (10) 

where ,xy ,u xy ,u
A,r B ,rφ φ  and ,xy ,p xy ,p

A,r B ,rφ φ  are the pressure modes 
of the bases obtained for each subdomain with zero normal 
pressure gradient and zero pressure at the perforated 
surface, respectively, and ,u u

A,r B ,rq q  and ,p p
A,r B ,rq q  are the 

modal participation factors. From a practical point of view, 
the modal expansion must be truncated and only natural 
modes ,u u

A BN N  and zero pressure modes at the interface 
,p p

A BN N  are used. Eqs. (9) and (10) can be expressed as 

( )
( ) ( )

( ) ( )

T

0

T

0

u p
A A

u p
B B

N N
xy xy
A A,r A,r A A

rxy

N N
xy xy
B B,r B,r B B

r

x, y q x, y A
x, y

x, y q x, y B

φ

φ

+

=

+

=

⎧
Ψ = = ⋅ ∈⎪
⎪Ψ =⎨
⎪Ψ = = ⋅ ∈⎪
⎩

∑

∑

Φ q

Φ q

(11) 
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Each transversal mode is defined by its corresponding 
modal participation factors qA and qB. To obtain these 
factors the weighted residuals method is considered. 
Applying this methodology to Eq. (4) we obtain [14] 

 ( )
( )

2 2 2 T
0 0

T

2 1 d

d d
A

IA

z z A A A

xy
A A A A A

k M k k M k

n
Ω

Ω Γ

⎡ ⎤− − − ⋅ ⋅ Ω⎣ ⎦

− ∇ ∇ ⋅ Ω= − ∂Ψ ∂ Γ

∫
∫ ∫

Φ Φ q

Φ Φ q Φ
 (12) 

All the modes used in the expansion of xy
AΨ  satisfy the rigid 

wall conditions at the non-perforated boundaries, so that the 
integral to the right of Eq. (12) can be eliminated except in 
the case of the perforated element itself. To evaluate this 
integral, the coupling of both subdomains at their interface 
must be imposed, which satisfies the impedance condition 
Zp in the perforated element, plus an additional continuity 
condition. The impedance condition in the perforated 
element is defined by 
 ( )xy xy

p A B AnZ u= Ψ −Ψ  (13) 

The additional condition has been studied by various 
authors and at the present time it has not been perfectly 
established whether the continuity imposed should be 
acoustic velocity or displacement [12]. The pressure 
gradient in the normal direction to the perforated element 
can be obtained from Euler’s equation. Both options can be 
combined in the following equation [12] 

 ( )0 0 0j 1 Contxy
A An z Ann D u Dt M c k uρ ρ ω ω∂Ψ ∂ =− =− − (14) 

where Cont takes the value of 1 in the case of the continuity 
of velocity and 2 for continuity of displacement. The 
following equation is obtained by combining Eq. (13) and 
Eq. (14) 

 ( ) ( )0 0j 1 Contxy xy xy
A z A B pn M c k Zρ ω ω∂Ψ ∂ =− − Ψ −Ψ  (15) 

Adding the pressure gradient from Eq. (12), we get 

 
( )

( )

( )

2 2 2 T
0 0

T

T T0 0

2 1 d

d

j 1 d

A

A

I

z z A A A

A A A

p

z A A A B B
p

k M k k M k

M c k
Z
ρ ω

ω

Ω

Ω

Γ

⎡ ⎤− − − ⋅ ⋅ Ω⎣ ⎦

− ∇ ∇ ⋅ Ω

⎛ ⎞= − ⋅ ⋅ − ⋅ Γ⎜ ⎟
⎝ ⎠

∫
∫

∫

Φ Φ q

Φ Φ q

Φ Φ q Φ q

 (16) 

The following notation is defined 

 ( )TT

T T

d ; d

d ; d
A A

I I

A A
A A A A

AA AB
A A A B

Ω Ω

Γ Γ

= ⋅ Ω = ∇ ∇ Ω

= ⋅ Γ = ⋅ Γ

∫ ∫
∫ ∫

MA Φ Φ KA Φ Φ

PA Φ Φ PA Φ Φ
 (17) 

Using this notation and assuming continuity of velocities 
(which means adopting the value Cont = 1), Eq. (16) can be 
expressed by 
 2 0AA AA AA AB AB

z z A z Bk k k⎡ ⎤ ⎡ ⎤+ + ⋅ + + ⋅ =⎣ ⎦ ⎣ ⎦K D M q K P q  (18) 

where 

 

( )

2
0 0

0 0 0

2
0

0 0

j

j 2

1 ; j

j

AA A A AA
p

AA AA A
p

AA A AB AB
p

AB AB
p

k Z

M c Z M k

M Z

M c Z

ρ ω

ρ

ρ ω

ρ

= − −
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=− − =

=−

K MA KA PA

D PA MA

M MA K PA

P PA

 (19) 

From a similar procedure for Eq. (5) we obtain: 
 2 0BA BB BB

A z Bk⎡ ⎤⋅ + + ⋅ =⎣ ⎦K q K M q  (20) 

where the matrices that appear are defined by  

 
2 j

j;

BB B B BB

p

BB B BA BA

p

k
Z

Z

ρω

ρω

= − −

=− =

%%

%

K MA KA PA

M MA K PA

 (21) 

and the matrices associated with the integrals are  

 ( )TT

T T

d ; d

d ; d
B B

I I

B B
B B B B

BB BA
B B B A

Ω Ω

Γ Γ

= ⋅ Ω = ∇ ∇ Ω

= ⋅ Γ = ⋅ Γ

∫ ∫
∫ ∫

MA Φ Φ KA Φ Φ

PA Φ Φ PA Φ Φ
 (22) 

Eqs. (18) and (20) can be grouped as 

20
0

0 0 0

AA AB AA AB AA
A

z zBA BB BB
B

k k
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+ + =⎜ ⎟⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

qK K D P M
qK K M

(23) 

Eq. (23) represents an eigenvalue problem in which each 
axial wavenumber kz is associated with a transversal mode 
(eigenvector) defined by the modal participation factors. 
This eigenvalue problem can be solved by conventional 
methods, which is an improvement in comparison with the 
analytical direct method, in which the transversal 
wavenumbers are obtained by solving the nonlinear 
characteristic equation. It also avoids the problem of modal 
jump and the subsequent loss of modes. With regard to the 
application of FEM to obtain the final transversal modes, 
the matrices considered to compute the initial sets of modes 

,xy ,u xy ,u
A,r B ,rφ φ  and ,xy ,p xy ,p

A,r B ,rφ φ  area also valid for the problem 
expressed by Eq. (23), and therefore the computational 
effort is reduced [14]. 
The number of transversal modes that can be computed 
depends on the number of equations available, that is, on 
the number of basic modes used in each subdomain. As 
expected, the accuracy in the evaluation of the transversal 
modes improves as the number of modes is increased, thus 
leading to a suitable convergence.  

2.3 Solution of the acoustic field in each 
component 

When the transversal modes have been computed, Eq. (3) 
allows us to express the pressure field in a component s by 

 j

1

e
( s ,r )
z

N
k zxy

s s ,r s ,r
r

p C −

=

= Ψ∑  (24) 

where the wave amplitudes Cs,r are unknown and must be 
established from the continuity conditions at component 
interfaces by the mode matching method. The continuity 
conditions involve pressure as well as axial velocity, since 
Cont = 1 has been assumed previously [12]. The axial 
acoustic velocity can be computed by Euler’s equation, 
leading to 

 j

10 0 0

1 e
( s ,r )
z

( s ,r )N
k z( s ) xyz

z s ,r s ,r( s ,r )
r z

ku C
c k M kρ

−

=

= Ψ
−∑  (25) 

2.4 Acoustic field in the muffler 

Using the acoustic solution for each component given by 
Eq. (24) and Eq. (25), and weakly imposing the continuity 
of pressures and axial acoustic velocities at component 
interfaces by the mode matching method, all the wave 
amplitudes Cs,r can be obtained, thus solving the acoustic 
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problem in the muffler. When applying the mode matching 
method, the integration of the products between modes 
extended to the transversal subdomains must be evaluated. 
If the initial base modes have been obtained by the finite 
element method, these integrals can be evaluated by using 
the same element mass matrices [14]. 
Finally, the transmission loss (TL) can be calculated 
directly by 

 j

1

TL 20log e
( TS ,r )
z outlet

N
k zxy

TS ,r TS ,r
r

C −

=

⎡ ⎤=− Ψ⎢ ⎥
⎣ ⎦
∑  (26) 

where TS refers to the component associated with the outlet 
duct and zoutlet is the coordinate of the muffler outlet section. 
In Eq. (26), an incident plane wave with unity amplitude is 
assumed as excitation, and an anechoic termination is 
imposed at the outlet. 

3 Results 

To validate the results obtained from the proposed method, 
these were compared to those obtained by Xu et al. [15] by 
the direct method (modified to include mean flow), which 
allows the study of concentric resonators with absorbent 
material in the chamber and the presence of a perforated 
duct. Fig. 2 shows the geometry of the circular concentric 
resonator studied in two configurations. In Configuration 1 
the muffler has a perforated duct that separates the central 
passage from the outer chamber filled with absorbent 
material, while in Configuration 2 this perforate duct is 
removed. 

0.0762 m

0.315 m

0.037 m

 
Fig. 2 Geometry of dissipative muffler. 

The aim of the study is to establish the validity of the 
procedure both with and without perforated duct. The 
perforated pipe in Configuration 1 has the following 
properties: thickness t = 0.001 m, hole diameter dh = 0.0035 
m and porosity σ = 0.263. To model the perforated pipe, the 
impedance model with tangential mean flow proposed by 
Lee and Ih [2] was used, without including the effect due to 
the presence of the absorbent material [3], which was 
characterised by Delany and Bazley’s two-parameter model 
[16], as defined by the following equations. 

 ( )( ) ( )( )4 2
3 1

0

=1 2 j 2k a aa R a R
k

ω π ω π+ +
%  (27) 

 ( )( ) ( )( )6 8
5 7

0

1 2 j 2Z a aa R a R
Z

ω π ω π= + +
%  (28) 

where the flow resistivity of the material used is R = 30716 
rayl/m and the model is defined Table 1. 

a1 a2 a3 a4 
-0.2202 -0.5850 0.2010 -0.5829 

a5 a6 a7 a8 
0.0954 -0.6687 -0.1689 -0.5707 
Table 1 Model for the absorbent material 

To validate the proposed methodology, a uniform mean 
flow was considered in the central duct with M = 0.15. The 
wavenumbers of the first axial modes obtained from the 
two concentric resonators of Configurations 1 and 2 were 
compared with the direct method proposed by Xu et al. 
[15]. Figs. 3 and 4 show the results for both mufflers at the 
highest excitation frequency used in the computations, 
which could be expected to provide the maximum possible 
error. As can be seen from the graphs, there is close 
correspondence between both results, which demonstrates 
the validity of the proposed method, with and without 
perforated duct. The results were obtained with six modes 
in the central duct and seven in the chamber. 
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Fig. 3 Axial wavenumbers of dissipative muffler with 
perforated duct for an excitation frequency of 3.2 kHz. 
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Fig. 4 Axial wavenumbers of dissipative muffler without 
perforated duct for an excitation frequency of 3.2 kHz. 

Fig. 5 depicts the moduli of the transversal modes of 
progressive waves at an excitation frequency of 3.2 kHz in 
Configuration 1. The wavenumber can be seen to rise 
steadily. This means that none of the modes has been lost, 
as may happen with the direct method. The derivative of the 
pressure at the perforated interface can also be seen to 
jump, as expected. 
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Fig. 5 Modulus of first transversal modes at a frequency of 

3.2 kHz in Configuration 1. 
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Fig. 6 shows the transmission loss (TL) obtained by both 
methods for the mufflers studied. Computations were 
carried out with the modes indicated above. The results 
again show good agreement. Fig. 6 also shows the high 
attenuation obtained at high frequencies due to the presence 
of absorbent material and the disappearance of the typical 
pass bands associated with the propagation of transversal 
modes in reactive mufflers. 
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Fig. 6 TL of dissipative muffler: ⎯⎯, direct method with 
perforations; οοο, proposed method with perforations; ----, 
direct method without perforations; ���, proposed method 

without perforations. 

4 Conclusions 

A new method has been developed to compute the 
transversal modes of acoustic domains with uniform cross 
section including axial mean flow, absorbent material and a 
perforated pipe, thus permitting the subsequent application 
of the mode matching method to obtain the muffler 
behaviour. The procedure provides (with a sufficient 
number of modes) similar results to those obtained by the 
direct method (widely validated in the bibliography), both 
for axial wavenumbers and transmission loss. Although 
different analysis methodologies are usually validated by 
comparing transmission loss only, in this case axial 
wavenumbers were also compared, since any possible 
discrepancies between the methods are more likely to show 
up on a non logarithmic scale. In order to validate the 
methodology in relation to the direct method, circular 
concentric mufflers with absorbent material in the outer 
chamber and mean flow in the central duct were used. The 
results obtained confirm the satisfactory performance of the 
proposed method. 
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