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Application of room impulse responses (RIRs) to acoustic evaluation and auralization often requires
many measurements to get enough information about the hall, or to provide enough flexibility for virtual
sound source placements in convolution reverberation. In this paper we propose a measurement-based
fuzzy modeling method to approximate the RIR function at an arbitrary location between available
measured points, without apriori information on the hall geometry or wall reflection parameters. For the
fuzzy model identification we define an accuracy indicator of the spatial density of the source positions
and predict the required number of them in a selected hall. This indicator quantifies the relationship
of the early reflections, determined for various measured positions. This paper also proposes a method
that treats non-uniform spatial sampling of the measurement positions, and its implementation for 2D
cases is shown. Non-uniform spatial sampling can be useful when RIRs at some source positions - e.g.
positions of musicians on a stage of a concert hall - are known or have to be measured precisely, but
RIRs at locations in between require an approximation only. The proposed fuzzy model of RIRs actually
transforms the measured information into a uniform and tensor product form, enabling the analyst to
use further matrix and tensor algebra based numerical methods.

1 Introduction

The room is treated as an infinite-input infinite-output
MIMO (or IIIO) bounded-input bounded-output (BIBO)
stable causal linear time-invariant (LTI) system. This
model is quite difficult to handle and such systems are
difficult to identify because of its number of inputs and
outputs and lengthy room impulse response (RIR) for
each pair of I/O. To measure with least effort, only a
few number of inputs and outputs are selected instead
of identifying the whole system, and several room acous-
tic parameters are extracted from the available RIRs.
The density of spatial sampling – and other conditions
such as time invariance – for an acceptable reliability is
given in the [1] standard: it proposes to measure RIRs
between ’as many source positions as possible’ (> 2)
and a given number of listener positions (typically be-
tween 6-12 depending on the room size). For applica-
tions such as auralization-based on convolution rever-
beration, users often seek for the availability of moving
their sound source positions not only to discrete mea-
sured positions, but continuously, therefore some kind of
modeling is essential. However, the geometry and sur-
face parameters (such as the complex impedance) is of-
ten not known to provide an accurate geometric model.
The purpose of this work is to present a method that
is entirely based on measurements, capable of approxi-
mating the RIR function between measured source po-
sitions. We further hope that this method will be later
capable of simplifying the identification of the room in a
way finite discrete measurement positions are sufficient
for building a convex hull on estimated room acoustic
parameters. We first present the basic assumptions in
Section 2, then discuss the RIR interpolation model in
Section 3. Based on the need of local variability, we
choose a fuzzy model that we present in Section 4, and
a simplified version of the proposed fuzzy model is im-
plemented and evaluated in Section 5. The proposed
model can later be extended with non-linear properties
as well.

2 Basic assumptions

2.1 Synchronized time support of RIRs

Measurements of the RIRs are based on a Finite Impulse
Response (FIR) model. This model is valid, because

real-world reverberation is feed-forward and the decay
is of finite length (energy conservation). The present
assumption of synchronized time support of RIRs states
that the end-point of the RIRs are the same within the
same room, regardless of the physical locations of the
measurement positions, if the room has a perfectly dif-
fuse sound field. This is not difficult to see, because the
steepness of the decay slope should be the same every-
where, otherwise the reverberation time would not be
the same within the same room. Assuming that this is
true, this means that wherever the sources are placed,
the reverberation tail will be synchronized for all source
positions regardless of the listening position, and the
only differences we would see will be at the preceding
part, namely the propagation delay, the direct arrival
and the early reflection pattern. The differences will be
temporal and energetic as well.

2.2 Separability of RIRs

We further assume that RIRs have two separable parts:
a deterministic ’early’ part and a stochastic ’late’ or tail
part. These two blocks are following each other respec-
tively with a smooth transition. Finding an exact time
limit between the deterministic part and the stochastic
part therefore is not possible. However, Hidaka et al [2]
proposes a very useful definition for a ’transition time’ te
that can be determined by utilizing short-term correla-
tion analysis on the RIR. They used a fix source position
and showed that the transition time is dependent on the
receiving position in actual rooms. They found that the
te is around 225 ms in average in a shoebox-shaped con-
cert hall, varying between 70 and 300 ms. We assume
that using a fixed value of 300 ms will be correct for
all positions at a concert hall, while in smaller halls we
will select smaller, but fixed values for all positions. We
propose using the interpolation only at the early part.
The tail part will not be interpolated but will be added
to the interpolated response later.

2.3 Continuity of RIRs

The assumption of continuity of a RIR states that in-
finitely small movements of sound sources having a fixed
listener will cause a continuous change in the reflection
pattern both in the temporal and the energetic proper-
ties. A small source movement will result in a different
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angle of incidence on a reflective surface, and this dif-
ference is growing and accumulating in multiple reflec-
tion paths according to the mean free path, but still, the
wall impedance of the reflective surface is continuous ex-
cept for the case of a perfectly rigid wall. Although the
surface impedance is not only incidence but frequency-
dependent as well and is most likely different at each
point of a real surface, we assume that the continuity is
likely to be correct at least in the beginning of the early
part. Fortunately our main scope of interest is in this
part because this is one the most significant part of the
reverberation process for a human subject.

2.4 Continuity of excitation positions

We assume that regardless of the source position within
a room, all frequencies will be excited in the same man-
ner, so the frequency content of the diffuse field will not
depend on the physical location of the sound source.
Certain room modes however cannot be excited from
certain discrete positions called nodal surfaces. At lower
frequencies, standing waves at natural frequencies are
dominant in a steady-state sound-field in the room. There
is certain frequency limit up to the modal representation
of a room is used, because the modes in a real room
have a finite non-zero bandwidth due to damping. This
bandwidth can be defined as:

Bf,mode =
6 · ln 10

2π · T60,f
(1)

The modal density is increasing asymptotically with the
square of the frequency for any shape of room [3] – anal-
ogously to the density increase of arriving reflections
with time –, therefore distance of the maxima of the
modes become smaller. This results in the fact that
a single-frequency excitation might excite more than a
single room mode. The crossover frequency for modal
overlap (aka Schröder-frequency) is the frequency limit
of the modal approach which is as follows for rectangular
rooms:

fSch =

√
c3

4 ln 10
T60

V
(2)

This concludes that rooms of big size and small rever-
beration time (such as modern concert halls) have a
quite low, while very large rooms with long reverbera-
tion times (e.g. cathedrals) may have a higher Schröder-
frequency.

Room name V [m3] T60 [s] fSch [Hz]
Musikvereinsal, Wien 15000 2.0 23.9
KKL Hall, Luzern
(closed chambers)

17823 2.05 22.2

Avery Fisher Hall,
New York

20400 1.76 19.2

Carnegie Hall, New
York

24270 1.79 17.7

Table 1: Modal overlap crossover (Schröder)
frequencies of different rooms of shoebox shapes at

occupied state. Raw data from [4].

We can conclude from Table 1 that our frequency of
interest – that is around 20 Hz to 8 kHz – is very likely to
lie in the region of a non-modal representation, therefore
all frequencies will be excited at all times, regardless of
the source position in the room.

2.5 Detectability of reflections

We assume that we can detect reflections in the RIR.
Localizing significant reflections in time-domain is very
easy if the propagation medium and the reflections are
non-dispersive. A non-disperse response keeps the source
spike well localized in time. For a non-disperse propaga-
tion, the speed of sound should be frequency-independent
and there should be no propagation attenuation. When
low-pass filtering occurs, such as in the case of air at-
tenuation, the bandwidth of the reflection will decrease,
therefore its temporal support will increase. On the
other hand, when a reflective surface has an impedance
of such that it can be modelled as a non-linear-phase fil-
ter, different frequencies will have different group delays
causing a further increase of the time support. Present
reflection detection methods all use some kind of local-
ized energy detection methods such as maxima detection
or short-term correlation, either concentrating on tem-
poral, frequency or scale-domain properties. One of the
simplest method is a windowed local maxima search-
ing method of finding and marking portions of pressure
or energy maxima in the interval of interest. Another
method might be the short-term correlation based tech-
nique we propose using here, but there are other meth-
ods as well, such as the cross-wavelet transform (XWT)
utilizing the Paul-wavelet, as described in [6].

3 Interpolation of RIRs

We can conclude from our previous assumptions that it
is only the early (deterministic) part of the RIR that we
can interpolate. We present our approach using a fixed
receiver and a large number of different source positions
within the same room.

3.1 Spatial interpolation

In common room acoustic measurement situations, source
points of interest is measured which are often not on an
equidistant grid. The first problem we should overcome
is to select appropriate RIRs and their level of contri-
bution that will take part in the interpolation process,
given this arbitrary measurement position setup of non-
uniform (irregular) spatial sampling. However, interpo-
lation and matrix representations both require a grid of
such for simplicity, therefore, a spatial mapping of an
irregular grid to a regular grid is required.

3.1.1 2D mapping by using linear interpolation

Constructing a measurement-lattice by connecting real
measurement points of an irregular grid will result in
having quadrangles and triangles. During the approxi-
mation the neighbor points for interpolation will be the
corner points of the polygon that is containing the arbi-
trarily selected point we want to map onto an equidis-
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tant grid. The algorithm therefore can be divided into
two main parts: we select the appropriate neighbors for
position mapping first and then we determine the inter-
polation factors. To determine the neighbors we take
the points of each polygon in the lattice in a given order
and for each point we create the vector to our approxi-
mation point and to the next point of the polygon and
we calculate the vectorial product of them. The rule
of selection follows the fact that the sign of the vecto-
rial products shall be the same for all the corner points
of the appropriate polygon that contains our arbitrary
point.

p3

p4

p1 , p2
� = ����

4

�=1

 p1 p2

p4 p3

q
q

Σ

Figure 1: Mapping of an irregular measurement lattice
to an equidistant grid.

To form an equidistant grid, the measured points are
aligned to an m x n matrix by including a single mea-
surement position for more than one time, if needed.
Original neighbors should be neighbors in the matrix as
well (See Fig. 1). The equation system for the weights
for a quadrangle is:

p0 = w1w2p1 + (1 − w1)w2p2+
(1 − w1)(1 − w2)p3 + w1(1 − w2)p4

(3)

There are two unknown weight parameters and two equa-
tions for each coordinates, so the solution can be found.

w1 =
−b ±√

b2 − 4ac

2a
(4)

w2 =
p01 − w1p21 − (1 − w1)p31

w1p11 + (1 − w1)p41 − w1p21 − (1 − w1)p31
(5)

a = (p32 − p22)(p11 − p21 + p31 − p41)−
(p31 − p21)(p12 − p21 + p31 − p41)

(6)

b = (p32 − p22)(p41 − p31) + (p11 − p21+
p31 − p41)(p02 − p32) + (p12 − p22 + p32 − p42)

(p31 − p01) − (p31 − p21)(p42 − p32)
(7)

c = (p02 − p32)(p41 − p31) − (p01 − p31)(p42 − p32) (8)

The same equations can be formed for the case of trian-
gles, when two corner points (p3 and p4) are the same
on the grid:

p0 = (w1w2 + (1 − w1)w2)p1+
+(1 − w1)(1 − w2)p2+

+w1(1 − w2) · p3

(9)

3.2 Temporal mapping of reflections

Following our previous assumptions, we map significant
reflections of the RIRs taking part in the interpolation
process by forming pairs. Reflections can be paired if
they have a high cross-correlation value, and a similar
energy. In this present approach we pair the reflections
manually to be able to test other parts of the proposed
methods without being affected by the accuracy of tem-
poral mapping. The spatial measurement density can be
quantified by examining the change in the early reflec-
tion pattern of two neighboring RIRs in 1D. We define
the accuracy indicator by measuring the time differences
between significant reflections by fitting a 1st-order re-
gression polynomial FT to the curve T = T1(T2) where
T1 contains the arrival times of RIR1 and T2 contains
RIR2’s. If these are the same, the regression line and
the T line are both the same line. To quantify the dif-
ference, we evaluate the goodness-of-fit of the regression
line to the original data with the R2 coefficient of deter-
mination:

R2 =
∑

i (FTi
− T )2∑

i (Ti − T )2
(10)

where FTi
is the i-th value of the regression line, T is

the average of the reflection arrival time values Ti. An
R2 of 1.0 indicates a perfect fit, showing the unrealistic
situation of only a constant time-shift between the sig-
nificant reflections of the RIRs. Therefore there should
be a threshold defined in order to find a proper indi-
cation. Fig. 2 shows an example in a measured room.
An indication of the Ntot total required measurements
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Figure 2: Reflections of RIR1 (up) and RIR2 (middle)
showing the RIR function (solid grey line) and the

arrival positions (dashed black line). Paired reflections
(solid line) and regression (dashed line). Significant
reflections were selected manually in this example.

positions for an accurate spatial sampling is possible as-
suming measuring on a rectangular grid by using the

Acoustics 08 Paris

10008



S surface-of-interest of the room (e.g. the stage) and
the dmin minimum distance of two measured RIRs that
have an lower R2 value than a given threshold level of
desired accuracy:

Ntot =
4S

d2
min

(11)

3.3 Interpolation of time support

Interpolation of time support practically means time
stretching and compression according to a factor that is
determined by the fuzzy algorithm. Time stretching can
be implemented most easily with resampling, but this
affects the frequency response by introduces frequency
shifts. This error is low if the time supports of the dif-
ferent RIRs that are taking part in the interpolation
process are similar. If they are not, other more com-
plex interpolation methods may be used. Such methods
can be frequency preserving time stretching algorithms
using either time-domain approaches, analysis and re-
synthesis or physical modeling techniques; but to our
best knowledge, their applicability on transient signals
such as RIRs are not yet discussed. In this present ap-
proach, we use resampling instead of other more com-
plex techniques, for simplicity.

3.4 Interpolation of reflections

Following our previous assumptions, we interpolate the
reflections as-is without changing its time support at a
given time window of the direct sound. Results will be
presented in the Evaluation section.

4 Fuzzy model for RIR interpo-
lation

The early part of the RIR has a granular layout in terms
of having significant reflections. When these reflections
are arriving more frequently as time advances, we reach
the stochastic part of the RIR that are not handled
in our proposed interpolation approach. Granular lay-
outs are handled more conveniently with soft computing
techniques and representations such as neural networks
or fuzzy modeling. Granularity also appears because of
the fact that we measure at discrete measurement posi-
tions. The spatial measurement sampling grid, which is
a geometrical grid can be matched well with the fuzzy
modeling approach, more conveniently than with neural
networks. Therefore we propose using fuzzy modeling.

4.1 Takagi-Sugeno fuzzy system based
modelling

A fuzzy model defines a mapping from x to y. This
mapping is defined by the linguistic fuzzy rules, such as

IF x1 is A1,i1 AND x2 is A2,i2 . . . AND xN is AN,iN

THEN y is Bi1,i2,...,iN

where An,i is the i-th antecedent set of the n-th input di-
mension (i = 1, . . . , In; n = 1, . . . , N) given by μn,i(xn)
membership function and Bi1,i2,...,iN

is the consequent

set. The fuzzy inference consists of three main steps.
First the given value is fuzzified (termed as observation)
and then the degree of fitting of the observation and the
given rules are computed. The degree of fitting of the
rules is used to modified the corresponding consequent
fuzzy sets. Finally the modified consequent fuzzy sets
are combined and defuzzyificated to yield a scalar value
y.

4.2 Simplification for the present approach

In the present approach the fuzzification generates sin-
gleton fuzzy sets from the given x value. The antecedent
fuzzy sets are defined in Ruspini partition. The conse-
quent sets Bi1,i2,...,iN

are also given by singleton fuzzy
sets defined by the location of the corresponding an-
tecedent sets. For defuzzyfication we apply center of
gravity (COG) method. The linguistic fuzzy rules are
fully specified that means that all combination of the
antecedent fuzzy sets are covered by a rule. Having the
above simplification the transfer functions of this special
Takagi-Sugeno fuzzy model becomes:

y =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

μ1,i1(x1)μ2,i2(x2) . . .

. . . μN,iN
(xN )Bi1,i2,...,iN

.

(12)

5 Implementation and evaluation

5.1 Correlation-based reflection detection

We detect significant reflections by correlating the re-
ceived direct sound in each RIR with its forthcoming
early reflections (ER). This method has the advantage of
using a distant loudspeaker response (the direct sound)
with similar travel path lengths and it also includes im-
perfections of the speaker response. A possible imple-
mentation is as follows: first match the spatial mea-
surement matrix to the equidistant grid, then find the
RIRs to be used for interpolation and take the early
(ER) part of them. For each RIR find the significant
reflections by cross-correlating the RIR’s direct sound
with the ER part by using different time lags yielding
the SXCF matrix. Reduce its dimensions by finding the
maxima across the time lags, then locate the significant
reflections and match the reflections of different RIRs.

5.2 Unchanged support of the direct sound

To visualize the direct sound change with different source-
receiver distances, we present an example on Fig. 3
measured by one of the authors at a large concert hall
in Budapest, Hungary. It can be seen that there is a
smoothing effect with distance and only a few samples
of time-domain smearing, if there is any at all. Therefore
we will not compensate for the time support extension
in the correlation analysis for reflection detections.

5.3 Interpolation in a rectangular office
room

We measured a simple rectangular office room (with fur-
niture) at a fixed listener position for 14 closely spaced
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Figure 3: Temporal view of the direct sound of two
measured RIRs at a large concert hall (source-receiver

distance is 1.3 m and at 22.3 m with a fixed source
position). Measurement speaker was Genelec 8050A.

sources. We believe that a small room is a very strict
test environment as the reflections are coming very dense.
We have found that the length of the direct sound of the
speaker we were using was 14 samples at fs = 48 kHz,
so the sample length of non-overlapping reflections is
equivalent to a 0.1 m distance assuming c = 343m/s. If
reflections are coming from two paths closer than this
length, we cannot distinguish them. To visualize the
accuracy of a linear interpolation we selected signifi-
cant reflections manually and then interpolated man-
ually matched reflections on the length of the direct
sound. We have found that the k = 0.5 parameter
did not provide an acceptable time support interpola-
tion for the direct arrival (the difference was 10 samples
< 0.1m) so we had to choose k = 0.656 instead, which
might be either due to measurement positioning inaccu-
racy or due to the fact that linear interpolation is not
sufficiently complex enough. Anyway, it can be seen
that most of the reflections produce an acceptable in-
terpolated result. However, further testing is needed for
more positions and halls.
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Figure 4: Linear interpolation of reflections of two
measured RIRs compared to the measured target RIR
of a rectangular office room. Interpolation factor was
k = 0.656. Top: direct sound, middle: 4th reflection,

bottom: 6th and 7th reflection (see also Fig. 2).
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Figure 5: Linear interpolation of two measured RIRs
compared to the measured target.

6 Conclusion

We proposed a method of interpolating room impulse
responses with a fuzzy model following assumptions for
measurement-based modeling. From the modeling we
proposed new parameters for measuring the density of
spatial sampling in a room and presented a 2-dimensional
mapping method for transforming irregular measure-
ment grids to a regular lattice. We presented and tested
a simplified implementation of the proposed method by
using linear interpolation with a linearized Takagi-Sugeno
fuzzy machine. The presented approach relies on signif-
icant reflection detection so it is essential to have an ac-
curate detection and mapping algorithm. We also found
that the linearized simplification might not be accurate
enough so further work should focus on these topics.
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