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A numerical methodology is presented to compute the acoustic field in a closed domain filled by a 
thermoviscous fluid, using the finite element method. The formulation based upon temperature variation and 
particle velocity is well suited for both (i) modeling the acoustic, thermal and viscous effects in the fluid bulk 
and (ii) accounting for the non-slip and the thermal boundary conditions on the solid. Due to the development of 
thin thermal- and viscous- boundary layers compared to the acoustic wavelength, very different scales are 
present in the field. The finite element mesh used is iteratively adapted to account for these different scales, and 
anisotropic because of boundary layers effects. Results are presented for the axisymmetrical back chamber of a 
miniature condenser microphone. 
 

1 Introduction 

Applications of acoustics in small devices need to model 
not only the acoustical field, but also the associated 
entropic and vertical fields. These effects are induced by 
the viscosity and the thermal conduction of the fluid ; they 
are more significant near the boundaries of the acoustic 
fluid where viscous- and thermal- boundary layers develop. 
Accounting for these phenomena clearly arises when 
dealing with acoustic transducers, inertial- or thermo-
acoustics, capillary domains or porous materials. These 
systems often have complex geometry, such that the 
solution needs to be numerically computed. The standard 
description of acoustics by a scalar potential (like the 
pressure formulation) is not suited to represent the vertical 
movement, and a more complete formulation is required. 
Publication related to the numerical modeling of 
thermoviscous acoustics include the work [1] for a non 
viscous but heat conducting fluid, the numerical models 
[2,3] for thin layers of viscous fluid between parallel plane 
walls and the modeling of viscous [4,5] or thermoviscous 
[6] boundary layers. These work are suited for only 
particular geometry, or limited by specific assumptions, like 
an acoustic domain large compared to the boundary layers 
thicknesses. The method presented below is a Finite 
Element application of a relevant complete formulation [7] 
for acoustics in thermoviscous fluids. 

2 Basic formulation 

The thermoviscous fluid is assumed homogeneous and 
Stokesian (stress proportional to rate of strain and heat flux 
proportional to temperature gradient), at rest (no mean 
movement), with a linear behavior. A small perturbation 
around the steady-state is considered, giving rise to 
acoustical propagation, but also to thermal and viscous 
diffusion, which cause dissipation of energy. These last 
diffusion processes are strongly excited near the 
boundaries, because of the non-slip and the isothermal 
boundary conditions, which differ from the free and quasi-
adiabatic conditions in the bulk of the fluid. 
Both vortical (shear) and entropic (potential) movements 
are described by the particle velocity v, and the thermal 
diffusion can be described by the temperature variation τ. 
This couple of variables (v,τ) is relevant to describe both (i) 
the propagative and diffusive phenomena in the bulk of the 
domain and (ii) to derive the boundary conditions. 
Combining the linearized equations of conservation laws 
and of state of the fluid for a small perturbation in harmonic 
regime at angular frequency ω, the following coupled 
equation set is obtained [7] for the complex (v,τ) variables: 
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where the properties of the fluid are the density ρ0, the 
adiabatic speed of sound c0, the increase in pressure per unit 
increase in temperature at constant density ( )ρβ TP ∂∂= /ˆ , 

the ratio γ of the heat coefficients at constant pressure and 
constant volume per unit of mass, and where the diffusion 
characteristic lengths are lv’ for shear viscosity, lv for bulk 
viscosity and lh for thermal diffusion [8]. In a bounded 
cavity filled by a thermoviscous fluid, the usual boundary 
conditions associated to the equation set (1.1-2) is a 
Dirichlet condition for the variables (v,τ): both the particle 
velocity and the temperature variation are prescribed on the 
boundary of the domain : 

τ = 0 (isothermal condition),  (1.3) 
vv = (prescribed velocity) on the boundaries 

The other perturbation variables of the fluid (density 
variation, entropy variation, etc…) can be expressed from 
the solution (v,τ)  of eq. (1) ; in particular the acoustical 
pressure variation is  
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3 Finite Element model 

The operators of the coupled linear equation set (1) are 
usual Finite Element operators. Denoting the tensor C  such 

that 
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, this equation set takes the following matricial form: 
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Where the diagonal operators involve the usual mass- and 
stifnes- Finite Element matrices for vectorial and scalar 
variables, and where the non-diagonal operators concern 
first spatial derivatives (resp. div, grad) of the variables 
(resp. v,τ). 
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The set (2) is easily discretized by the finite element 
method to compute the solution of 2D, 3D or 
axisymmetrical systems. In a closed cavity, the field is 
excited by the conditions (1.3) prescribed on the 
boundaries, which are accounted for as usual Dirichlet 
conditions in the Finite Element Method. 

4 Adaptive meshing 

The physical phenomena occurring in in a cavity filled by a 
thermoviscous fluid develop at very different length scales: 
the thermal and viscous diffusion processes develop inside 
the boundary layers, whose thicknesses are several 
magnitude smaller than the propagative phenomena at the 
acoustic wavelength. Computing efficiently a numerical 
solution by the finite element method in such a multiscale 
model needs to take particular attention on the used mesh. 
Because of the thermal- and viscous- boundary layers, 
where the normal variations are much greater than the 
tangential ones, an anisotropic mesh is necessary. In some 
regions of the studied domain, the field is very smooth and 
presents variations at the only large acoustic wavelength, 
whereas diffusive transfers inside or near the boundary 
layers make the field strongly vary at length much smaller 
than the boundary layers thicknesses. The adaptive meshing 
technique [9] is a relevant method to refine the mesh 
exactly where needed. Starting with an initial coarse mesh, 
the outline of the method is: 

1- to compute a (possibly approximate) solution of the set 
(2) on the given mesh by the Finite Element Method, 

2- from this solution, to estimate the Hessian (2nd 
derivatives) of the field, and to build an anisotropic 
metric suited to minimize the interpolation error, 

3- according to this metric, to build a new adapted 
anisotropic mesh, 

4- go back to 1- for the next iteration. 
Using this iterative procedure, the mesh is progressively 
adapted to the solution and refined exactly where needed by 
the solution. 

5 Applications 

The Finite Element modeling of acoustics in thermoviscous 
fluid is illustrated to the back chamber of an axisymetrical 
miniature condenser microphone. The first bending mode 
of the upper membrane (Ø 3mm) is excited by the incident 
field, and we study the field inside the back chamber filled 
with a thermoviscous fluid (air at atmospheric pressure). 
The incident acoustic signal is measured via the movement 
of the membrane, the condenser electrodes being the 
membrane and the facing backing electrode. Due to the 
design and the process used [10], the backing electrode has 
differents steps (Fig. 1 below): 

 

Fig.1 Axisymmetrical model of the back chamber of a 
miniature microphone 

left : axisymmetrical axis, up: microphone membrane,  
right: peripheral cavity, down: backing electrode 

 

 
 
 
 

a) 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 

c)                                                                                         d) 

 

Fig.2 Optimized mesh of the back chamber after 16 mesh adapting iterations a), 
detailed view near a step of the backing electrode b) c), 
detailed view of the mesh in the peripheral reservoir d). 
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Figure 3 Particle velocity near the right step of the backing electrode.  
 (color map = magnitude, arrows = unitary orientation, 

left : fluid domain between the upper membrane and the backing electrode (mesh of fig. 2b),  
right : detailed view near the step (mesh of fig. 2c), illustrating the vortex (around t=T/4 and t=3T/4)) 

 

 
t = T 

 
t = T / 4 

 
t = 3 T / 4 

 
t = T / 2 
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Figure 4 Particle velocity (left) and temperature variation (right) in the peripheral cavity (mesh of Fig. 2d).  
 (particle velocity (left) : color map = magnitude, arrows = unitary orientation,  

temperature variation : color map = magnitude) 

The boundaries of the cavity are isothermal; the solid 
boundary is rigid, except the upper membrane whose 
normal velocity is prescribed (Fig. 1, in red: input flow of 
the first bending mode of the microphone membrane). The 
flow generated by the normal movement of the upper 
membrane is stored in the surrounding reservoirs. This 
axisymmetrical device is presently modeled at a frequency 
of 1kHz, for a maximum deflection at the center of the 

membrane of 1µm. Figure 2 presents the mesh obtained 
after 16 iterations for mesh adapting. Due to the radial 
flow and the strong shear movement and thermal transfers, 
the adapted mesh is anisotropic in the tapered layer 
between the electrodes (Fig. 2b), whereas it is quasi 
isotropic in the peripheral reservoir (and coarse, fig. 2d) 
and near the steps of the backing electrodes (and very 
refined, fig. 2c). 

 
t = T 

 
t = T / 4 

 
t = T / 2 

 
t = 3 T / 4 
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The fluid flow generated by the oscillating membrane is 
accumulated and transferred to- (t=0..T/2, membrane 
moving down) or from- (t=T/2..T, membrane moving up) 
the peripheral reservoir, with an intensive radial velocity 
vector and intensive viscous shear stress, around times 
t=T/4 and t=3T/4 respectively (figure 3, left). Due to this 
driving flow, a small recirculating cell (vortex) is 
maintained just near the different steps of the backing 
electrode (figure 3, right). The fluid flow stored in- and 
back- in the peripheral reservoir is compressed / expanded, 
so that the temperature of the fluid oscillates (figure 4). 
However, due to thermal diffusion with the boundaries, the 
extrema for the temperature variation are delayed with 
respect to the input flow: the extrema for the fluid flow are 
t=0.5T and t=T, the extrema for the thermal power 
developed by the compressibility of the fluid occur at 
t=0.25T and t=0.75T, whereas the extrema for temperature 
variation can be observed at t=0.4T and t=0.9T. Due to the 
intensive heat transfer with the surrounding boundaries, the 
temperature variation remains very small in between the 
two facing electrodes. Unlike the maintained driven 
recirculating cells near the steps of the backing electrode 
(figure 3, right), the vortices observed in the peripheral 
reservoirs (figure 4) when the flow is inverting (at the times 
t=T/2 and t=T) is very transient. 

The acoustic pressure field, computed in a second time 
using equation (3), oscillates according to the input flow of 
the global back chamber, with a small delay induced by the 
thermoviscous properties of the fluid and the transfers with 
the boundaries. 

6 Conclusion 

When combined with the Finite Element Method and 
adaptive and anisotropic meshing techniques, the 
formulation based on the particle velocity and the 
temperature variables (v,τ) is well suited to compute 
numerically the harmonic thermoviscous acoustic field in 
closed cavities, accounting for both propagative and 
diffusive phenomena. Such multiphysics and multiscale 
numerical models give detailed information on the focal 
field ; it can be useful for applications in small acoustic 
devices, acoustical metrology, microfluidics or 
thermoacoustics. 
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