
Determination of unknown parameters in impervious
layers by inverse method
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In this work, it is showed a novel procedure for the determination of unknown parameters in impervious layers 
used in multilayer structures by inverse method and using scale models. Experimental pressure and velocity data 
are obtained by Nearfield Acoustic Holography (NAH) for the calculation of the Transmission Loss of the 
different multilayer structures mounted on the window of a wooden box designed for that end. These data are 
used as input data in the inverse method. The forecast model of acoustic insulation in multilayered structures 
used in this work was Trochidis&Kalaroutis model based on Spatial Fourier Transform (SFT). By applying 
Trochidis&Kalaroutis model and adjusting by numerical methods the variables that define the impervious layers 
of the system, the values of the unknown magnitudes of the layers are calculated. For validation purposes the 
results are compared to those obtained with Ookura&Saito model.  
 

1 Introduction 

Exist different models that describe acoustic behaviour in 
multilayer structures, among them the Ookura & Saito 
model [1], based on impedance coupling between layers; 
the Trochidis & Kalaroutis model [2] and the Bruneau 
model [3], based on a Spatial Fourier Transform. The 
model of Ookura & Saito analyzes a sound transmission 
index in multilayer structures by impedance transfer for 
inclined incident-angle waves and random sound fields. 
The method developed by Trochidis & Kalaroutis is based 
on a matrix that defines multilayer structures.  
Most models that describe acoustic behaviour in multilayer 
structures are based on two types of structural materials: 
sound-impervious materials and sound-absorbing materials, 
such as mineral or organic wool, textile or glass fibres, 
open honeycomb-like layers. Absorption depends on the 
frequency and angle of the incident sound wave. Sound 
propagation through sound-absorbing materials is usually 
characterized for homogeneous and isotropous materials by 
two complex values: a complex propagation constant (Γ ) 
and complex characteristic impedance (Z). Other methods 
can also be used to characterize sound-absorbing materials, 
e.g., Kundt’s impedance tube; many such methods are 
described in the literature [4-5]. 
A thin, plane, and uniform surface is assumed with a given 
rigidity; it vibrates with small displacement amplitudes. 
The thin plate is characterized by a surface density m 
(kg/m2) and a given rigidity [6]. Within the plate, the 
restoring force is governed only by its rigidity. The general 
equation that governs the movement of symmetrical 
vibrations is as follows: 
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where ρ(kg/m3) is the volume density of the material, σ is 
the Poisson coefficient, Y (N/m2) is the Young modulus, 
and h (m) is the turn radius of the surface, which has a 
value of 12/Lh =  where L is the thickness of the plate.  
A number of mathematical models have been developed to 
estimate the coefficient of sound transmission of the 
impervious material or layer. These models generally 
require accurate data on the elastic properties of the 
material, as this is the most important factor in terms of 
vibration velocity. The surface density also affects 
transmission coefficients at low frequencies. Such models 
also require values for the flexural stiffness (D), surface 
density (ρ), thickness (h), and loss factor (η ) of the layer. 

Inverse analysis normally refers to the parameters of a 
system that provide the best fit between the calculated and 

observed acoustic behaviour. Inverse analysis is more 
complex than direct analysis, as the mathematical problem 
consists of the minimization of a non-linear function. The 
function is an error function that is calculated as the 
difference between the calculated and measured data using 
any given combination of parameters. Such techniques are 
useful because the calculated parameters can be used in 
making estimates for future stages of the same project, 
thereby minimizing potential inaccuracies in the employed 
model. Various studies have made use of inverse methods 
in determining material properties based on finite element 
analysis and modal analysis [7-9]. 
Once the values of the parameters that characterize the 
layers and sound-absorbing material of the system are 
known, the Trochidis & Kalaroutis model can be used to 
estimate transmission loss in the multilayer structure. In 
inverse models, the values of experimental transmission 
loss can be used to obtain the system parameters that best 
fit the theoretical and experimental results. 
In the present paper, we use an inverse method to determine 
unknown parameters in multilayered structures using as 
input data Nearfield Acoustic Holography (NAH) values 
and the multilayer prediction model described above.  
The NAH technique is based on the measurement of of 
sound pressure using an array microphone positioned on a 
plane that is both parallel and close to the measurement 
area. Using digital data-processing techniques, NAH values 
can be used to calculate the acoustic magnitudes on the 
object surface by back-propagation of the acoustic field. 
The main advantage of NAH is that the sound field of any 
other plane of the object can be reconstructed from 2-D 
values, termed a hologram [10].  
This approach can be used for practical applications 
because the theoretical models are normally applied to ideal 
partitions with elastic properties that do not vary with the 
incidence angle of the sound wave. Therefore, 
complementary calculation techniques can be used to 
ensure the optimal application of theoretical models to real 
structures, with no need for real-time measurements 

2 Fundamentals 

2.1 The inverse method 

The inverse method for the identification of parameters is 
based on iterative loops between the experimental data and 
the prediction model, using different parameter values of 
the structural materials to optimize the results and minimize 
model error. To this end, we use an error function that 
shows the minimum value of the most suitable parameter of 
the plate (Fig. 1). 
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Fig. 1.Diagram of the inverse method 

 

Parameter-identification techniques are used to obtain the 
parameters of the model that best fit real-time 
measurements and model predictions. The problem of 
estimating parameters using real-time measurements can be 
solved by using an explicitly formulated model that relates 
a number of measurements x with a certain number of 
parameters of which we have no a priori knowledge: 
 
                                         x=Z (y)                                      (2) (4) 

where Z represents the model. The relation expressed by Z 
is non-linear. The inverse problem consists of finding a set 
of parameters “y” such that the variables calculated using 
such parameters “ ix̂ ” via Eq. (2) provide a better fit to real-
time measurements “ ix ”[7-9]. Data fitting is 
mathematically performed based on an identification 
criterion. The selection of the criterion determines the 
function whose maximum and minimum correspond to the 
solution of the problem. There are different identification 
criteria, but the most widely used are the least squares and 
maximum likelihood criteria. In the present study, we use 
the mean square error function, expressed as follows: 
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where iτ  represents the value of the transmission 
coefficient obtained from experimental measurements at 
frequency i and iτ̂  is the theoretical value given by the 
model.  
The model adjusts to the characteristics of the materials. 
The model uses three variables that have been measured, 
surface density, Young modulus and shear modulus. The 
loss factor is a parameter that depends on the frequency and 
in the model a constant total loss factor is used.  

2.2 Trochidis & Kalaroutis model  

The theoretical model consists of two infinite, thin, elastic 
plates with no connection between them. A sound-
absorbing material is placed between them [2] in such a 
way that a gap exists between the plates and the intervening 
material (Fig. 2). 
 

 
Fig. 2.Multilayer model under study 

 
The multilayer structure is excited with a plane wave front 
that is incident to the structure at an angle θ from the 
direction normal to the structure. The time dependence is 
assumed to be tjωe− , where ω  is the angle frequency. 
Zones I, II, IV, and V are described by a Helmholtz scalar 
equation, representing the propagation of sound in air: 
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where 
0

0 ck ω=  is the sound wavenumber. 

The equation that describes the movement of Plate I is 
expressed as 
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where ( )xw1  is the plate displacement in the normal 
direction, 1ρ  is the density of the plate material, 1h  is the 
thickness of the plate, 1D  is the flexural stiffness of the 
plate, and ( )zxpI ,  and ( )zxpII ,  are the sound pressures in 
Zones I and II respectively. The space filled with the sound-
absorbing material (zone III) is represented by a complex 
wavenumber, bk , and a complex density, bρ . The wave 
equation for the sound-absorbing material is as follows: 
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 The equation that describes the movement of outer Plate II 
is 
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where ( )zxpIV ,  is the sound pressure in zone IV (air) and 
( )zxpV ,  is the sound pressure in zone V. 

This method generates a matrix for the different multilayer 
structures, which is obtained by directly applying the 
boundary conditions of the materials. This results in 
different equations with partial derivatives that can be 
transformed into algebraic equations via the Spatial Fourier 
Transform.  
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Once the transmitted sound pressure, ( )zxpt , , is known, 
the transmission coefficient can be obtained by 
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where limθ  represents the limit angle from which any 
contribution to the sound field is negligible. From Eq. (9), 
transmission loss can be obtained from the following 
expression: 

                                 dτlog10−=TL                                (9) (13) 

2.3 Nearfield Acoustic Holography 

Nearfield Acoustic Holography is a technique that 
reconstructs the sound field and vibration velocity of an 
object or sound source from measurements taken with 
microphones placed on a plane that is both parallel to and 
close to the sound source (see Fig. 3). The nearfield 
measurements enable the capture of the evanescent waves 
(subsonic waves that exponentially decay with increasing 
distance from the sound source) that are generated by the 
sound source and that contain high-resolution details about 
the source [11].  

 
Fig. 3.  Source plane and hologram plane  

 

Based on Green’s theorem, an integral can be derived that 
describes the sound pressure at any point in space between 
the sound source and the measurement plane. The complex 
pressure at any point in the free space can be expressed as a 
function of the complex pressure ( )p  on the source plane 

sz , where ( )ss zyxp ,','  is the distribution of the complex 

pressure on sz  and ( )szzyyxxG −−− ,',''  is the normal 
derivative of Green’s function that satisfies the Dirichlet 

eigenvalue limit condition on sz . 
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If all points are assumed to be located on the same 
measurement plane, termed the hologram, hz , and as 

sh zz −  is a constant, Eq. (10) describes a 2-D convolution 
between the complex pressure on plane sz  and the 
modified Green’s function, which becomes a simple 
product in the wavenumber domain: 

 

    
( ) ( ) ( )shyxsyxshyxh zzkkGzkkpzkkp −⋅= ,,',,,,

   
(11) 
 

3 Development 

The test setup used for the measurements is shown in Fig. 
4. The setup consists of a rod with holes in which four ¼" 
microphones were placed 1.5 cm apart. The rod was 
mounted on a robot that moved the linear array microphone 
by the box. The materials used were 49 x 61 cm in size and 
were mounted on the window of a wooden box of 
dimensions 110.4 x 69.9 x 47.3 cm. The wooden box used 
is inwardly recovered of polyester fiber that has a average 
absorption coefficient of 0.6. The layers were settled to 
ensure that there were not air-gaps between the layers and 
the sound-absorbing material. All the panels were mounted 
with elastic contour. Two broadband speakers were located 
on each side of the box, and the room was half-lined with 
sound-absorbing wedges. 

 
Fig. 4. Experimental setup and the robot with the array 

microphone 

 
A white noise of 3 sec in duration was generated by the 
speakers located inside the box, being maintained at the 
same intensity for all measurements. The noise generated 
inside the box was transmitted through the material of the 
box window and the response was recorded by the 
microphones over the measurement area and in the near 
field. A total of 1064 recordings were taken, distributed in a 
28 x 38 matrix. The materials used in the study were 
analyzed individually and in combination, including 3 and 5 
mm wooden boards, 2.5 cm polyester wool plates, and a 1 
mm steel sheet. Measurements were taken at a distance of 2 
cm from the box window that contained the materials of 
interest. The data were then analyzed using NAH to 
calculate the acoustic pressure and the vibration velocity on 
the surface of the material outside the window. The filter 
parameters were kc = 0.6 kmax and α = 0.2. 
The amount of Transmission Loss (TL) from the interior to 
the exterior of the box can be calculated according to the 
following Eq. (12): 
 

                ( ) TL=− RS LL  (12) 

 
where SL  is the sound pressure level (measured in dB) in 
the source region, i.e., inside the box, and RL  is the sound 
pressure level (dB) in the receiver zone, i.e., on the material 
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surface. Diffusers were placed inside the box to enhance the 
degree of homogeneity of the acoustic field.  
 
Knowing the plate’s parameters, adjusts the flow resistance 
of the sound-absorbing material such that the resulting TL 
fits the TL obtained via NAH [12,13]. Funcapa algorithm 
calculates the flow resistance using as input data the critical 
frequencies of the plates, 21 cc fandf , the surface densities 
of the plates, 21 mandm , and TL obtained using NAH. The 
following Matlab© function is then run: 
 

y= fminsearch(‘funcapa’, X) (13) 

 
where y is the minimum value of the error function, 
calculated in Funcapa using the criteria of the function 
“fminsearch”, of the difference between experimental 
measurements and the theoretical value of TL. Funcapa 
calculates the error in each iteration, which is retained in 
order to represent it. X is the value that starts the function 
and yields a local minimum y, close to X; the function 
‘funcapa’ accepts the input y and returns a scalar function 
value. The “fminsearch” function is based on the Nelder–
Mead algorithm. The function minimizes a non-linear 
function of n real variables using only function values, with 
no additional data [14]. The function minimizes the error 
function  calculated in Funcapa and generates an optimal 
value that ensures a better fitting of TL to NAH values.  
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All of the other parameters for the plates, such as loss 
factors and critical frequencies, can be evaluated following 
the same procedure to obtain a better fit of TL to NAH 
values. The algorithm identifies the parameter frequency 
per frequency and calculates the average in 1/3 octave 
bands. 
 
A multilayer structure was evaluated, fixing a range of 
values for thw critical frequency for the layers ranging from 
500 to 1500 Hz. The error is obtained where the minimum 
value yields the approximate value of the critical frequency 
of the wooden layers. 
 
Fig. 5 shows the error (measured in dB) obtained for the 
critical frequency of the wood of the multilayer structure. 
Note that the minimum error gives the optimal frequency 
for fitting, approximately 1070–1090 Hz.  
 

 

Fig. 5. Error function (dB) dependence on critical frequency of 
wood obtained from fminsearch function in case of a multilayer 

structure 
 

TL with NAH was calculated as described in the previous 
section. The TL values for the 5 mm wood and 1 mm steel 
obtained from the experimental measurements were used as 
input data for the SFT model (Table 1); the inverse method 
was then used to calculate the specific data for each 
material (Table 2).  
 

 Steel Wood 

Thickness (mm) 1 5 

Surface density (kg/m2) 10 3.8 

Critical frequency (Hz) 12500 1000 

Loss factor 0.004 0.024 

Table 2. Specifications of the analyzed materials 

The measured value of critical frequency of the steel plate 
is of 12500 Hz. This can be observed in the measurement, 
since the critical frequency corresponds with a diminution 
of the isolation. 
The data obtained using the inverse method are used to 
calculate TL for multilayer structures. The input data for 
the absorbing-material model is flow resistance, which in 
the present case is 1200 Rayls/m. 
Fig. 6 shows TL for the “5 mm wood + wool + steel” 
multilayer structure obtained using the Trochidis & 
Kalaroutis (based on SFT) and Ookura & Saito models, as 
well as the TL obtained using NAH. Both of the models 
and the NAH technique yield similar trends in TL. Our 
measures are carried out with Fast Fourier Transform.  

 
Fig. 6. Comparison of the SFT, Ookura&Saito and NAH 

methods to obtain TL of the 5mm wood+wool+steel structure 

 
 

4 Conclusion  

With the inverse method employed in the present study it is 
possible determining unknown parameters for impervious  
layers with good results using the Trochidis & Kalaroutis 
prediction model for the Transmission Loss in multilayer 
structures and experimental data obtained by NAH as input 
data.  
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