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A finite element analysis of acoustic radiation in an infinite lined guide with mean flow is studied. In order to bound the
domain, transparent boundary conditions are introduced by means of a Dirichlet to Neumann (DtN) operator based on
a modal decomposition. This decomposition is easy to carry out in a hard-walled guide. With absorbing lining, many
difficulties occur even without mean flow. Because the eigenvalue problem is no longer selfadjoint, acoustic modes are
not orthogonal with respect to the L2-dot product. However, an orthogonality relation exists which permit to write
the modal decomposition. For a lined guide with uniform mean flow, orthogonality relation doesn’t exist but a new
dot product allows us to define the DtN operator. We consider first the case of an infinite rectangular two-dimensional
lined guide with uniform mean flow to present the methodology. Then, the extension to the axisymmetric cylindrical
problem is presented.

1 Introduction

The study of the propagation of acoustic waves with
mean flows remains an open and difficult problem whose
applications involve the sectors of aerospace (turbine
aircraft) and automobiles (mufflers). For these prob-
lems, there are often areas where the geometry is com-
plex, requiring the use of finite element method and ar-
eas equivalent to waveguides allowing the use of modal
methods. Our work concerns the study of a lined acous-
tic guide with uniform mean flow. The system is mod-
elled here by the Helmholtz convected equation. The
use of the finite element method requires truncating the
calculation field. It uses a transparent boundary con-
dition described by a DtN (Dirichlet to Neumann) op-
erator based on a modal decomposition. The case of a
two-dimensional guide with absorbent material reveals
difficulties even in the absence of flow: the operator is
no longer self-adjoint and modes are no longer orthog-
onal under usual dot product. A new dot product is
then introduced to allow the writing of the transpar-
ent boundary condition. We attempt here to generalize
the results for axisymmetric cylindrical geometries (0rz
plane) in order to treat more realistic cases. The re-
search of the modes is made more difficult since they
are now expressed by Bessel functions.

2 Two-dimensional guide

2.1 Theoretical models

We consider an infinite two-dimensional duct of height
h containing an assumed fixed acoustic source and a
fluid in subsonic uniform flow of speed v0 according to
ex. The upper wall ΓZ (y = h) is covered with an
absorbing material characterized by an impedance Z
(Z ∈ C). The lower horizontal boundary Γ of the duct
is supposed here perfectly rigid (see figure below). The
problem is posed in the Oxy plane where the x-axis is
parallel to the walls of the guide.

2.2 Hard-walled guide

In the absence of flow, the acoustic wave propagation is
described by the Helmholtz equation:

Δp+ k2p = f in Ω (1)

Where f is a source with compact support. For per-
fectly rigid walls, the boundary conditions on the border
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Figure 1: Problem Geometry

∂Ω = Γ ∪ ΓZ ∪ Σ+ ∪ Σ− are written as:

∂p

∂n
= 0 on Γ and Γ Z (2)

∂p

∂n
= −T±(p) on Σ± (3)

where n means the external normal, k = ω/c the
wavenumber with c the speed of sound, and T−(p) and
T +(p) the ”Dirichlet to Neumann” (DtN) operators for
the transparent boundary condition at the extremities
Σ− and Σ+ of the guide. To clarify the DtN operators
(3) on the boundaries Σ− and Σ+ it is necessary to
determine the modes of the guide which are solutions
of (1). They are the classical solutions obtained by the
variables separation method:

p (x, y) = ϕ(y)eiβx (4)

In the particular case of a duct with perfectly rigid walls
without flow, we can see(see [2]) that there are two kinds
of modes:

p±n (x, y) = ϕ±n (y)e
iβ±

n x (5)

where indices ± correspond to the direction of mode
propagation. One easily deduces the distinction between
the propagative modes (β±n ∈ R) and the evanescent
modes (β±n /∈ R). It is also noted that: ϕ+

n (y) =
ϕ−n (y) = ϕn(y) and β+

n = −β−n . Finally, the modes
of the duct can form an orthonormal basis of L2(ΣS)
verifying the boundary conditions: ∂ϕn/∂y = 0 for
y = 0 and y = h:

ϕ0 = 1/
√

h ; ϕn =
√
2/h cos(

nπ

h
y) , n ≥ 1 (6)

The constant of propagation βn is given by the equation
of dispersion:

β2
n = k2 − α2

n (7)
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With αn = nπ/h. The DtN operators on Σ− and Σ+

can be written as:

T±(p) = ∓
∑
n≥0

iβ±n (p, ϕn)Σ±
ϕn(y) (8)

(p, ϕ)Σ±
=

∫
Σ±

p ϕ dΣ (9)

where (., .) represents the dot product on L2(Σ±) and
ϕ the complex conjugate of ϕ. The associated varia-
tional formulation consist to find p ∈ H1(Ω) such as
∀ψ ∈ H1(Ω):∫

Ω

∇p.∇ψ̄ dΩ− k2

∫
Ω

p ψ̄ dΩ

+

∫
Σ±

T±(p) ψ̄ dΣ =

∫
Ω

f ψ̄ dΩ (10)

2.3 Lined guide without flow

In the presence of absorbent material on a wall (gener-
alization to two treated walls does not raise any difficul-
ties) propagation of acoustic waves is still governed by
the Helmholtz equation (1), only the boundary condi-
tions change on ΓZ :

∂p

∂n
=

ikp

Z
on ΓZ (11)

The research of the solutions with separate variables
leads to the following transcendent equation:

−αntan(αnh) =
ik

Z

For a purely real impedance (ie. pure resistance), as in
the case of a perfectly rigid guide, the modes form an
orthonormal basis of L2(Σ±) and determining the DtN
operator does not pose additional difficulties. On the
other hand, for a complex impedance wall the problem
is no longer self-adjoint (because the adjoint depends
on Z̄), modes are no longer orthogonal under usual dot
product on (9). However, if we define a new dot product
(p, ϕn)

∗
Σ

, it is possible to establish an orthogonality
relationship. The DtN operator is expressed then by:

T±Z (p) = ±
∑
n≥0

iβ±n (p, ϕn)
∗
Σ±

ϕn(y) (12)

Where (., .)∗ represents the new dot product difined as:

(p, ϕ)∗
Σ±

=

∫
Σ±

p ϕ dΣ (13)

There are exceptional values of the impedance Z for
which the normalization of the modes (6) is no longer
possible, and the operator DtN can no longer be ex-
plained. These exceptional values Zc were deduced from
the equation (12) for the values of αn complex roots of
the equation :

sin(2αnh) + 2αnh = 0 (14)

Apart from the exceptional values Zc of the impedance,
the transverse numbers of waves αn, solutions to (12),

n α+
n β+

n

1 0.7897-1.1705i 7.0543+0.1310i
2 2.8012-0.3759i 6.4282+0.1638i
3 6.1213-0.1609i 3.4142+0.2958i
4 9.3179-0.1077i 0.1631+6.1513i
5 12.4865-0.0803i 0.0970+10.340i

Table 1: Roots of −αntan(αn) = ik/Z for the corre-
sponding Z = 3.5(1 + i) and βn, k=7.

are sought by the Newton-Raphson method (see Table
1). The complex impedance value leads to a constant
of propagation β±n always complex (7) responsible for
the attenuation in the guide, due to ±Im(β±n ) > 0.
Nevertheless, as in the case without absorbent, it was
still ϕ+

n (y) = ϕ−n (y) and β+
n = −β−n .

2.4 Lined guide with uniform mean flow

In the presence of a uniform mean flow (M = v0/c)
and a treated boundary of impedance Z, the problem in
the two-dimensional guide is described by the convected
Helmholtz equation:

(1−M2)
∂2p

∂x2
+

∂2p

∂y2
+ 2ikM

∂p

∂x
+ k2p = 0 in Ω

(15)

∂p

∂n
= 0 (Γ) (16)

∂p

∂n
= − i

kZ
(M

∂

∂x
− ik)2p (ΓZ) (17)

∂p

∂n
= −T±ZM(p) (Σ±) (18)

Note, on the boundary condition on ΓZ (17) a tangential
derivative of the pressure appears. These terms are at
the origin of additional difficulties clarified later on. We
are looking for mode solutions of (15) in the form:

pn(x, y) = An cos(αn y)eiβnx (19)

The dispersion relation is now expressed by :

α2
n = k2 − (1−M2)β2

n − 2kMβn (20)

Where αn is now the solution of an equation which de-
pends on βn:

−αntan(αnh) =
i (β2

n + α2
n)

kZ
(21)

One can divide the solutions into two families according
to the sign of the imaginary part of βn. In the situations
for which there are not unstable modes (ie. small M
and large |Z| ), the couples αn, βn solutions of (20)
and (21) are modes which are propagated towards the
downstream (respectively upstream) when Im(βn) >
0 (resp. Im(βn) < 0), and they are then noted :
α+

n , β+
n (resp. α−n , β−n ).

Writing the DtN operator requires the definition of a
new dot product noted ((., .)) which appears naturally
in the variational formulation. It is expressed by :

((p, ϕ))Σ±
=

∫
Σ±

p ϕ dΣ− i M2

kZ(1−M2)
p(h)ϕ(h)

(22)
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The modes are no longer orthogonal (ie. ((ϕn, ϕm))Σ±
	=

δnm), and it raises:

((ϕn, ϕm))Σ±
= Onm (23)

where O is a spectral matrix which allows defining the
new DtN operator such as:

T±ZM(p) = ±
∑

n,m≥0

iβ±n (O
−1)nm ((p, ϕm))Σ±

ϕn(y)

(24)
The transparent conditions described by the DtN op-
erator (24) thus require the calculation of the modes,
still performed by the Raphson Newton method in the
complex plane starting from Equations (20) and (21)
(see Table 2). The tangential derivative of the pressure
(17) leads to the emergence of an additional term on the
border (y = h) in (22). The spectral matrix O is not
diagonal, its evaluation is thus more expensive than in
the last cases where the matrix O is the identity thanks
to an orthogonality relation. However, it was verified
that the spectral matrix O tends to becoming diagonal
when n and m are large.

n α+
n β+

n

1 0.4820-0.8857i 5.4242+0.0607i
2 2.9328-0.2236i 4.7482+0.1021i
3 6.1445-0.1357i 1.9054+0.2175i
4 9.2440-0.0621i -2.2007+5.8940i
5 12.4071-0.0014i -2.3059+10.4875i

n α−n β−n
1 2.1452-1.8204i -9.9283-0.5631i
2 2.0977-0.6508i -9.7133-0.2026i
3 6.0127-0.2840i -6.7474–0.4227i
4 9.3638-0.1898i -2.6277-6.1027i
5 12.5684-0.1632i -2.5184-10.6973i

Table 2: Roots of (20) and (21) for Z = 3.5(1 + i),
M=0.3 and k = 7

2.5 Numerical results

Consider the acoustic propagation in an infinite guide
with a monopolar circular source located at the centre
of the computational domain for k = 7. In the absence
of an analytical solution, we compare the numerical so-
lution obtained with the operator DtN to that obtained
through the use of layers PML [4] on Σ− and Σ+. Fig-
ure 2 was made through the code MELINA [3] in the
absence of flow and without absorbing while Figure 3
shows the influence of an impedance Z = 3.5(1 + i).
In both cases the error is less than 1 %.

Figure 2: Real part of the acoustic pressure, DtN (top)
PML (bottom), M=0, without absorbent, k=7

Figure 3: Real part of the pressure, DtN (top) PML
(bottom), M=0, Z = 3.5(1 + i), k=7

3 Generalization in 3D: axisymmetric

cylindrical duct

We consider here the same problem as before, but ax-
isymmetric. It is a cylinder with a radius R. The prob-
lem is set in the Orθz plane but by reason of axisymetry
it can be restricted to the plane Orz where the z-axis
is parallel to the walls of the duct (see Figure (4).

3.1 Hard-walled guide

We have here the same Helmholtz equation and bound-
ary conditions as in the 2D cartesian case, with a xisym-
metric boundary condition modeled by a Neumann ho-
mogeneous condition:

∂p

∂n
= 0 on Γ0

We are looking for solutions by separation of variables:
p (r, z) = ϑ(r)eiβz. This gives us two kinds of modes :

p±μ (r, z) = ϑ±μ (r)e
iβ±

μ z. As in the 2D cartesian case,
they are now expressed by:

ϑ0(r) =
√
2/R

ϑμ(r) =

√
2

J0(kμR)R
J0(kμr) , μ ≥ 1 (25)

where J0 is the 0 Bessel order first kind. The dispersion
equation is expressed here by:

β2
μ = k2 − k2

μ (26)

The DtN operators on Σ− and Σ+ are expressed as in
the two-dimensional model:

T±(p) = ∓
∑
μ≥0

iβ±μ (p, ϑμ)Σ±
ϑμ(r) (27)
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Figure 4: Axisymmetric problem geometry

(p, ϑμ)Σ±
=

∫∫
p ϑ̄ r drdz (28)

The variational formultaion is: Find p ∈ H1(Ω) such
as ∀ψ ∈ H1(Ω):∫∫

∇p.∇ψ̄ r drdz − k2

∫∫
p ψ̄ r drdz

+

∫
Σ±

T±(p) ψ̄ r dr =

∫∫
f ψ̄ r drdz (29)

The difference with the 2D cartesian case is the scalar
r that appears in the integrals.

3.2 2D cylindrical lined guide without mean

flow

In the presence of absorbent material on the cylinder
wall, the boundary conditions change on the wall:

∂p

∂n
=

ikp

Z
on ΓZ

A search for solutions with separated variables leads to
the following equation:

−kμ

J1(kμR)

J0(kμR)
=

ik

Z
(30)

The normalization of modes becomes:

ϑμ(r) =
1

R

√
2

J2
0 (kμR) + J2

1 (kμR)
J0(kμr), μ ≥ 0

(31)
With J2

0
(kμR)+J2

1
(kμR) 	= 0, which allows us to de-

termine the critical modes and the critical impedances.
One has the same difficulties as in the two-dimensional
case requiring the introduction of a new dot product.
The transverse waves number kμ are in table below :

3.3 Lined guide with uniform mean flow

With uniform mean flow (M = v0/c), the Helmholtz
equation becomes:

∂2p

∂r2
+
1

r

∂p

∂r
+(1−M2)

∂2p

∂z2
+2ikM

∂p

∂z
+ k2p = 0

(32)

n k+
μ β+

μ

1 1.8879 - 0.3454i 6.7501 + 0.0966i
2 4.4605 - 0.4017i 5.4199 + 0.3306i
3 7.3636 - 0.2921i 0.8840 + 2.4329i
4 10.4094 - 0.2159i 0.2917 + 7.7067i
5 10.4094 - 0.2159i 0.2917 + 7.7067i

Table 3: Roots of −kμJ1(kμR)/J0(kμR) = ik/Z for
the corresponding Z = 4.5(1 + i) and βμ, k=7.

∂p

∂n
= 0 (Γ0) (33)

∂p

∂n
= − i

kZ
(M

∂

∂z
− ik)2p (ΓZ) (34)

∂p

∂n
= −T±ZM(p) (Σ±) (35)

Solutions are now expressed by:

pμ(r, z) = aμJ0(kμr)eiβμz (36)

with the following conditions:

k2
μ = k2 − (1−M2)β2

μ − 2kMβμ (37)

−kμ

J1(kμR)

J0(kμR)
=

i (β2
μ + k2

μ)

kZ
(38)

The new dot product defined in (22) makes it possible
to write the DtN operator :

T±ZM(p) = ±
∑

μ,ν≥0

iβ±μ (O
−1)μ,ν ((p, ϑν))Σ±

ϑμ(r)

(39)
with Oμ,ν = ((ϑμ, ϑν)) and

((p, ϑν)) =

∫
Σ±

p ϑ r dr− i M2

kZ(1−M2)
R p(R)ϑ(R)

(40)
The scalar r that appears here makes the difference com-
pared to the 2D case.

3.4 Numerical Results

The case of the semi-infinite cylinder is illustrated with a
Dirichlet boundary condition onΣ− and compared with
an analytical solution. Then, there is no source f = 0.
It consists of finding p ∈ H1(Ω) with p(r, 0) = ϑ(r)
such that ∀ψ ∈ H1(Ω), ψ = 0 on Σ−:∫∫

Ω

∇p.∇ψ r drdz − k2

∫∫
Ω

p ψ r drdz

−ik

Z

∫
ΓZ

p ψ r dz +

∫
Σ+

T (p) ψ r dr = 0 (41)

Figure (5) presents the results obtained without mean
flow and without absorbing while Figure (6) shows the
influence of an impedance Z = 4.5(1 + i). In both
cases the error is less than 1 %.
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Figure 5: Real part of the acoustic pressure, DtN (on
top) analytical Solution (on bottom), M=0, without ab-
sorbent, k=7

Figure 6: Real part of the pressure, DtN (on top) an-
alytical solution (on bottom), M=0, Z = 4.5(1 + i),
k=7

4 Conclusions

The numerical determination of the modes in a guide
with an absorbing wall in the presence or absence of a
uniform flow allowed us to write new transparent bound-
ary conditions . It was shown that the modes form a
orthonormed basis within the meaning of a new dot
product which we defined in the absence of flow. In
the presence of a uniform flow, the modes are not or-
thogonal any more, but it is still possible to introduce
a new dot product including the values of the pressure
on the treated wall. The DtN operator can then be cal-
culated with the help of the calculation of a spectral
matrix which becomes diagonal when the order of the
modes increases.
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