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The calculation of the sound field can be greatly simplified by using the Gaussian beam expansion technique. 
The source distribution function is expressed as the superposition of a small number of Gaussian functions, and 
the expansion coefficients could be obtained by minimizing an object function in the spatial or k-space domain. 
In this paper, a fast algorithm is developed to determine the Gaussian function coefficients for a more accurate 
approximation. Two-stage procedures are employed in the proposed method. Firstly, two real coefficients are 
estimated by a simple search approach, and then the least mean square (LMS) algorithm is adopted for 
determining the optimal expansion coefficients. Finally, the presented method is evaluated in the case of 
calculation of sound fields radiated from a piston and a rectangular planar source. Simulation results show that, 
compared with the previous approaches, the developed scheme is simple to implement with high accuracy. 

1 Introduction 

Recently, the Gaussian beam expansion technique has been 
applied to the modelling of sound beams [1-8]. An 
analytical expression can be obtained to predict the sound 
field radiated from a circular, elliptic or rectangular source. 
It reduces the computational time and also simplifies the 
calculation of the second order sound field. The principle of 
the Gaussian beam expansion technique is to decompose 
the source distribution function into the superposition of a 
small number of Gaussian functions. A key problem of this 
treatment is how to determine the expansion coefficients of 
Gaussian functions. Wen and Breazeale [1, 2] achieved the 
expansion coefficients by minimizing the square error 
between the superposition of Gaussian functions and the 
velocity distribution on the surface of circular piston. This 
procedure is performed in the spatial domain, which is 
named a spatial domain method. Ding et al. [4] also 
proposed a scheme to compute a set of expansion 
coefficients. On the other hand, Sha et al. [5, 6] obtained 
the expansion coefficients for a rectangular and elliptical 
planar piston in a two-dimensional spatial Fourier transform 
(k-space) domain. Kim et al. [8] reviewed these two 
methods and demonstrated that there is a simple 
relationship between the coefficients obtained in the spatial 
domain and k-space domain. It is pointed out that the two 
sets of coefficients could be transformed each other. 
However, the existing nonlinear optimization algorithms for 
computing the coefficients are complicated and 
time-consuming. This brings the need of an efficient 
algorithm to obtain the expansion coefficients. 
This paper presents a new algorithm to determine the 
Gaussian expansion coefficients of the source distribution. 
The 10-term, 15-term and 25-term expansion coefficients 
are obtained by the proposed method and compared with 
the corresponding coefficients in Ref. [1, 2, 8]. It is proved 
that the developed algorithm can provide a higher accurate 
approximation of the source function. For circular and 
rectangular transducers, the calculated sound fields by the 
proposed method agree well with the ones using Fresnel 
integral, which is superior to the previous approaches. 
Furthermore, the 25-term expansion coefficients with 
on-axis matching [2] are provided to improve the 
calculation of the near field radiated from a circular piston. 

2 Theory 

The sound field of ultrasonic transducer can be expressed 
by the Fresnel field integral, 
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The source is in the plane of z=0, V(x’, y’) is a normalized 
velocity on the transducer’s surface, k is the wave number, 
(x, y, z) is the field point. Factor exp[-i(ωt-kz)] is omitted. 

2.1 Circular transducer 

Define the dimensionless variables 2 2x y rρ = +  and 

Rz zσ = , Eq.(1) becomes the sound field of a circular 
transducer, 
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where r is the radius of the source, zR=kr2/2 is Rayleigh 
distance. Using the Gaussian beam expansion technique, 
the function V(ρ’) can be expressed as 
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Substituting Eq.(3) into Eq.(2) yields 

 ( )
2

1
, exp

1 1

N
n n

n n n

A B
p

iB iB
ρρ σ

σ σ=

⎛ ⎞
= −⎜ ⎟+ +⎝ ⎠
∑ . (4) 

2.2 Rectangular transducer 

Define the dimensionless variables /x abξ = , 

/y abζ =  and 2 /z kabη = , Eq.(1) becomes the sound 
field of a rectangular transducer, 
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where a and b are the half major and half minor axes of the 
transducer, respectively. For a uniform source, the function 
V(ξ’,ζ’) could be expressed as, 
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Substituting Eq.(6) into Eq.(5), we have the Gaussian beam 
solution in the following [3], 
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3 Determination of the Gaussian 
expansion coefficients 

In this section, an alternative algorithm is presented for a 
fast and accurate computation of the expansion coefficients. 

3.1 The new algorithm 

The expansion coefficients An and Bn are determined by 
minimizing the object function Q, 
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where the function Q must satisfy the conditions, 
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From Eq.(9), we have 
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Thus coefficients An are determined by Bn. Suppose 
Bn=αn-iβn and define 

 max
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Coefficients Bn only depend to two real coefficients δ and 
kmax. Using Eq.(10) and Eq.(11), Q is determined by δ and 
kmax. Therefore, an efficient algorithm is given as following: 
First stage: δ and kmax are searched to minimize Q as N is 
fixed. Empirically, δ is not too large and kmax increases as N 
grows. An example will be given in section 3.2 to explain 
the search method. 
Second stage: The obtained δ and kmax in first stage are used 
to compute initial values of coefficients Bn, and then a least 
mean square (LMS) algorithm is employed to calculate the 
“optimized” expansion coefficients. 
 

3.2 Example 

Consider a source with the following velocity function, 
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The function V(x) can be expressed by the inverse Fourier 
transform, 
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Changing x into x2, Eq.(13) can be written as 
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Multiplying Eq.(14) by exp(-δx2) and taking a limit, we 
have 
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Right side of Eq.(15) can be written as series, 
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Using Gaussian expansion technique, the function V(x) can 
be expressed by 
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It is clear from Eq.(16) and Eq.(17) that βn is identical to 
kx,m. Consider βn as “frequency” item, kx,m increases with m. 
That is the reason to offer Eq.(11) in section 3.1. The 
maximum of βn is kmax. 
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Fig.1 The relationship between N and kmax. 
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Fig.2 The velocity distribution of a 10-term Gaussian 

expansion coefficients when δ=2.9, kmax=6.72π. 
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n An Bn 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-0.0366 + 0.0698i 
-0.2880 - 0.1072i 
0.0463 - 0.8593i 
2.4278 - 0.4273i 
-1.6515 + 6.9321i 
-1.6515 - 6.9321i 
2.4278 + 0.4273i 
0.0463 + 0.8593i 
-0.2880 + 0.1072i 
-0.0366 - 0.0698i 

0.9568 + 22.0499i 
1.8966 + 17.3281i 
2.5687 + 12.2845i 
3.1522 + 7.1375i 
3.7397 + 2.2497i 
3.7397 - 2.2497i 
3.1522 - 7.1375i 
2.5687 - 12.2845i 
1.8966 - 17.3281i 
0.9568 - 22.0499i 

Q=0.0133666 

Table 1 10-term coefficients for the uniform piston source 

n An Bn 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

-0.0647 - 0.0042i 
 0.0334 - 0.2398i 
 0.5113 - 0.0972i 
 0.5858 + 0.7912i 
-0.6908 + 1.5627i 
-3.0363 + 0.5081i 
-3.6501 - 6.3857i 
13.6222 
-3.6501 + 6.3857i 
-3.0363 - 0.5081i 
-0.6908 - 1.5627i 
 0.5858 - 0.7912i 
 0.5113 + 0.0972i 
 0.0334 + 0.2398i 
-0.0647 + 0.0042i 

1.2100 + 35.6867i 
2.3108 + 31.3481i 
2.8161 + 26.2901i 
3.2223 + 21.1344i 
3.4860 + 15.8696i 
3.6537 + 10.4523i 
4.0206 + 5.0002i 
4.3552 
4.0206 - 5.0002i 
3.6537 - 10.4523i 
3.4860 - 15.8696i 
3.2223 - 21.1344i 
2.8161 - 26.2901i 
2.3108 - 31.3481i 
1.2100 - 35.6867i 

Q=0.0084602 

Table 2 15-term coefficients for the uniform piston source 

n An Bn 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.0250 + 0.0903i 
-0.1722 + 0.0417i 
-0.2335 - 0.2073i 
 0.0169 - 0.4669i 
 0.5003 - 0.4462i 
 0.9303 + 0.0207i 
 0.9359 + 0.8547i 
 0.2283 + 1.7047i 
-1.2466 + 2.0209i 
-3.1897 + 1.1364i 
-5.3844 - 1.7978i 
-3.2923 - 12.5813i 
22.7593 
-3.2923 + 12.5813i 
-5.3844 + 1.7978i 
-3.1897 - 1.1364i 
-1.2466 - 2.0209i 
 0.2283 - 1.7047i 
 0.9359 - 0.8547i 
 0.9303 - 0.0207i 
 0.5003 + 0.4462i 
 0.0169 + 0.4669i 
-0.2335 + 0.2073i 
-0.1722 - 0.0417i 
 0.0250 - 0.0903i 

2.7353 + 64.7628i 
2.4159 + 60.8489i 
3.0518 + 55.6123i 
3.3108 + 50.1677i 
3.5307 + 44.6995i 
3.7217 + 39.1628i 
3.8727 + 33.5837i 
3.9930 + 27.9784i 
4.0952 + 22.3454i 
4.1578 + 16.6841i 
4.2756 + 10.9041i 
4.6409 + 5.2178i 
4.9426 
4.6409 - 5.2178i 
4.2756 - 10.9041i 
4.1578 - 16.6841i 
4.0952 - 22.3454i 
3.9930 - 27.9784i 
3.8727 - 33.5837i 
3.7217 - 39.1628i 
3.5307 - 44.6995i 
3.3108 - 50.1677i 
3.0518 - 55.6123i 
2.4159 - 60.8489i 
2.7353 - 64.7628i 

Q=0.0048482 

Table 3 25-term coefficients for the uniform piston source 
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(b) N=15
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(d) N=10
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(e) N=15
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Fig.3 The approximation to the uniform piston source using the two methods: For (a), (b) and (c), the coefficients are from 

Table 1, 2, and 3; For (d), (e), and (f), the coefficients are given in Ref. [1, 2, 8]. 

Fig.1 shows the relationship between N and kmax as Q is 
locally minimized. Obviously, kmax is neither too large nor 
too small as N is fixed. The bigger N is, the greater kmax is. 
According to the numerous testing, the value of δ is in the 

range of 2 and 5. Thus, δ and kmax can be easily determined. 
Fig.2 shows the real part and image part of the 
superposition of 10-term Gaussian functions comparing 
with V(x) when δ=2.9, kmax=6.72π and Q=0.0164476. 
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Next, the LMS algorithm is employed to obtain the optimal 
expansion coefficients by using δ and kmax. The 10-term, 
15-term and 25-term coefficients are given in Tables 1, 2 
and 3 respectively. Fig.3 illustrates the approximation to the 
function V(x) using expansion coefficients obtained by 
proposed method and nonlinear optimization algorithm 
respectively. The set of coefficients used in Fig.3 (d), (e), (f) 
are given in Ref. [1, 2, 8]. The corresponding values of Q 
are 0.0168339, 0.0173398 and 0.0116548, respectively. It is 
seen from Fig.3 that the presented method approximate V(x) 
more accurately than the previous approach. Moreover, the 
obtained coefficients appear in conjugate complex pairs so 
that the image part of the superposition of Gaussian 
functions is exactly zero, which has the advantage of 
computation speed in the algorithm implementation. 

4 Simulations 

Firstly, in order to demonstrate the validity of the new 
method, the coefficients in Table 1, 2 and 3 are used in 
Eq.(4) to calculate the on-axis sound field of the circular 
transducer with the characteristic value kr=100. Fig.4 
shows the sound pressure in the near field (0.04z0< 
z<0.18z0). It is noted that the Gaussian beam solution agrees 
well with the Fresnel integral down to distances as small as 
0.15z0, at which point the N=10 data begin to diverge from 
the Fresnel integral. The N=15 data down to 0.09z0, and the 
N=25 data down to 0.045z0. Fig.5 shows the relative error 
of on-axis sound pressure between the Fresnel integral and 
the Gaussian beam solution in the far field (z0<z<20z0). It 
can be seen that the relative error is less than 0.45%. The 
bigger N is, the smaller the relative error is. 
Secondly, the 10-term coefficients in Table 1 are compared 
with the ones given by Wen and Breazeale [1] in the 
calculation of sound field. Both two sets of coefficients are 
evaluated in Eq.(8) with the rectangular transducer’s ratio 
b/a=2/3. Fig.6 and Fig.7 show the on-axis sound pressure 
and relative error in the near field (0.01Z0<z<0.1Z0) and far 
field (Z0<z<10Z0), respectively. Obviously, the use of 
presented 10-term coefficients approximate the Fresnel 
integral more accurately in near field and has less relative 
error in far field compared with those given in Ref. [1]. 
Finally, we improve the new algorithm for the nearfield 
calculation by introducing a constraint. Although Fresnel 
integral and the exact sound field (Rayleigh integral) have 
no distinct difference in far field for ultrasonic wave, they 
differ from each other in near field. The difference is shown 
in Fig.8. Because the Gaussian beam solution’s limit is 
Fresnel integral, it is not available to obtain a good 
nearfield description by minimizing function Q only. Here, 
we adopt the on-axis matching method [2]. A new set of 
25-term expansion coefficients are given in Table 4. Fig.9 
shows the 25-term Gaussian beam solution using on-axis 
matching as a constraint, which is compared with the 
Rayleigh integral. As shown in Fig.9, the 25-term Gaussian 
beam solution agrees well with the Rayleigh integral down 
to distances as small as 0.05z0. 
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Fig.4 The on-axis near field sound pressure of the circular 

transducer (with the characteristic value kr=100) calculated 
by 10-term, 15-term and 25-term Gaussian beam solution. 
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Fig.5 The relative error of the on-axis far field sound 

pressure of the circular transducer (with the characteristic 
value kr=100). 
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Fig.6 Comparison of the on-axis near field sound pressure 

of the rectangular transducer, b/a=2/3. 
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Fig.7 Comparison of the relative error of on-axis far field 

sound pressure of the rectangular transducer, b/a=2/3. 
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n An Bn 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

 0.0241 - 0.0155i 
-0.0408 - 0.0029i 
 0.0964 + 0.0108i 
-0.1257 - 0.0525i 
 0.3522 - 0.1809i 
 0.2470 + 0.1794i 
 0.2915 - 0.1028i 
 0.6222 + 1.2078i 
-0.9555 + 2.0721i 
-3.0511 + 1.2052i 
-5.2915 - 1.7977i 
-3.1917 -12.5799i 
22.8616 + 0.0240i 
-3.1973 +12.6223i 
-5.3114 + 1.8505i 
-3.1415 - 1.0693i 
-1.2231 - 1.9443i 
 0.2269 - 1.6286i 
 0.9102 - 0.7883i 
 0.8857 + 0.0267i 
 0.4467 + 0.4674i 
-0.0320 + 0.4605i 
-0.2645 + 0.1815i 
-0.1827 - 0.0676i 
 0.0428 - 0.1007i 

2.7372 +64.7861i 
2.5439 +60.8874i 
3.1321 +55.4940i 
3.5549 +50.2514i 
4.1582 +44.2264i 
3.1723 +37.6976i 
3.6115 +34.1954i 
4.3391 +29.4449i 
4.6465 +23.1049i 
4.4052 +16.9259i 
4.3622 +10.9767i 
4.6751 + 5.2243i 
4.9578 - 0.0140i 
4.6364 - 5.2449i 
4.2523 -10.9256i 
4.1327 -16.6905i 
4.0724 -22.3435i 
3.9720 -27.9687i 
3.8566 -33.5671i 
3.7125 -39.1419i 
3.5285 -44.6782i 
3.3130 -50.1472i 
3.0639 -55.5923i 
2.4320 -60.8658i 
2.6947 -64.7590i 

Table 4 The 25-term expansion coefficients (with on-axis 
matching) for the uniform piston source 
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Fig.8 The difference between Rayleigh integral and Fresnel 
integral of the on-axis near field of the circular transducer 

(with the characteristic value kr=107.8). 
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Fig.9 The on-axis near field sound pressure of a 25-term 

Gaussian beam solution of the circular transducer (with the 
characteristic value kr=107.8) using the on-axis matching. 

5 Conclusion 

A new algorithm for determining the Gaussian beam 
expansion coefficients has been presented. Two-stage 
procedures are employed to simplify the determination of a 
set of coefficients. Firstly, two real coefficients are searched 
to obtain the initial values of exponential coefficients. 
Secondly, the LMS algorithm is adopted for computing the 
optimal expansion coefficients. The proposed algorithm has 
the advantage of providing high approximation accuracy for 
the sound field calculation with a fast computation. 
Moreover, the obtained coefficients are conjugate complex 
pairs and the superposition of Gaussian functions has no 
image part, which are different from those in the previous 
approaches. Finally, the on-axis matching method is used to 
evaluate the nearfield. A high-accuracy approximation is 
achieved in the near field down to 0.05z0, which is 
unavailable for previous approaches. Simulation results 
show that our method has significantly improved 
performance in the calculation of sound field. 
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