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Near-field Acoustic Holography (NAH) is a measuring process for locating stationary sound sources from 
measurements made by an antenna of microphones positioned near the acoustic source plane. In order to characterize non-
stationary sources, a new formulation has been introduced to propagate signals on a forward plane using a convolution product 
with an impulse response in the time-wavenumber domain. The purpose of this paper is to solve the deconvolution problem 
related to this formulation and thus to introduce Real-Time Acoustic Holography. Taking the evanescent waves into account 
improves the spatial resolution of the solution but makes the deconvolution problem ”ill-posed”. In addition, the sampling of 
the impulse response is a delicate point. To enhance the source reconstruction several methods based on regularization and 
processing of the impulse response are experimented on a simulation case involving three non-stationary acoustic monopoles. 
The results show that low-pass filtering the impulse response and then inverting it using Tikhonov regularization improve the 
continuous time reconstruction of the back-propagated pressure field. 

1 Introduction 

The acoustic holography is a measuring process to localize 
sound sources from measurements made with an array of 
microphones located in the near-field of the acoustic source 
plane as shown in Fig.1. This method called Near-field 
Acoustic Holography (NAH) was introduced in the 
heighties [1] and is used for stationary sources. In order to 
characterize non-stationary sources, some methods like 
Time Domain Holography [2] or Time Method [3] may be 
used. A new formulation has been introduced [4] to 
propagate signals on a forward plane z=zf  (zf > zm)  using a 
convolution product with an impulse response in the time-
wavenumber domain. This formulation does not require any 
assumption about the stationary properties of the sources 
and can describe the time dependency of the propagated 
sound pressure field on the forward plane. In this paper we 
will first present a method to solve the deconvolution 
problem related to this formulation in order to introduce the 
Real-Time Nearfield Acoustic Holography and then tests 
different processing applied on the impulse response to 
improve the effectiveness of this method.    

Fig.1 Geometry of Acoustic Holography 

2 Forward propagation 

The direct problem of the Real-Time Nearfield Acoustic 
Holography consists in propagating the sound pressure field 
measured on a plane z=zs to a forward plane z=zf. It was 
shown [4] that this problem can be solved by using the 
convolution product of the time-dependent wavenumber 
spectrum P(kx,ky,zm,t) with an impulse response h:  

x y f x y m x y f mP( k ,k ,z ,t ) P( k ,k ,z ,t ) h( k ,k ,z z ,t )= ∗ − (1) 

where kx and ky are the wavenumbers along the axis x and y.  

The time-dependent wavenumber spectrum P(kx,ky,z,t) is 
calculated by applying a two dimensional Fourier transform 
along the axis x and y to the sound pressure field p(x,y,z,t) : 
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The expression of the impulse response h is obtained from 
the solution of the two dimensional Fourier transform of the 
wave equation :  
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where c (m.s-1) is the sound velocity in the air. If we note 

the propagation distance Δz=zf - zm, the wavenumber 
2 2

r x yk k k= + , the propagation delay z cτ = Δ  and the 

transition pulsation r rckΩ = , the impulse response h can 

be written 
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where J1 is the first order Bessel function, δ(t), the Dirac 

delta function and Γ(t) the Heaviside function. Replacing 
the expression of h in the Eq.(1) leads to the time-
dependent wavenumber spectrum on the forward plane 
P(kx,ky,zf,t). It is then possible to calculate the instantaneous 
spatial pressure in the forward plane p(x,y,zf,t) by applying 
the inverse two dimensional Fourier transform to 
P(kx,ky,zf,t).

3 Backward Propagation 

In the case of Real-Time Nearfield Acoustic Holography 
we are seeking the time-dependent pressure field on the 
source plane from measurements made by a microphone 
array in the nearfield of the source plane. In order to back-
propagate the pressure field radiated by non-stationary 
sources it is necessary to solve the deconvolution problem 
of the Eq.(1) which can be written as :  

1( , , , ) ( , , , ) ( , , , )x y s x y m x y m sP k k z t P k k z t h k k z z t−= ∗ −  (5) 

In order to explain the backpropagation of the instantaneous 
wavenumber spectrum of a pair (kx,ky) the Fourier 
transform is applied on the inverse of the impulse response 
h-1: 
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where fT is the transition frequency 
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As shown in Fig.2 the backpropagation acts differently 
depending on the frequency of the components, however 
this separation is not possible in the time-wavenumber 
domain : 

The components with a frequency f ≥ fT correspond to the 
progressive waves. The backpropagation of the progressive 
waves leads to a change of phase but their amplitudes 
remain unchanged. 

The components with a frequency f < fT correspond to the 
evanescent waves. The backpropagation of the evanescent 
waves leads to an amplification of their amplitudes but their 
phases remain unchanged. In the presence of measurement 
noise this amplification may induce erroneous values 
during the backpropagation. The problem is said “ill-posed” 
and requires processing with a regularization method. 

Fig.2 Modulus and phase of the theoretical Fourier 
transform of the inverse impulse response with fmax=fe/2, 

where fe is the sampling frequency.

4 Solving the backward propagation 

The method we chose to solve this problem is the standard 
Tikhonov regularization [5] as it does not require any 
assumption on the processed signal. This method consists in 
adding a constraint on the solution which is the 
minimization of its energy. If we consider the linear system   

=hx y                            (8) 

where h, y are known and x is to be calculated, the standard 

Tikhonov regularized solution xλλλλ of Eq.(8) is given by :  

{ }2 22

2 2
min λ= − +x hx y x           (9) 

where x 2 is the L2 norm of x and λ is the regularization 
parameter which will influence the weigth of the 
regularization. This parameter is to be estimated by the use 

of methods like the Generalized Crossed Validation (GCV) 
[6] or the L-curve [7]. First of all it is necessary to 
discretize and rewrite the convolution product in Eq.(1) into 
a matrix product equivalent to the linear system in Eq.(8). 

If we consider the discretized convolution product 
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the Eq.(10) is equivalent to  
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It is then possible to apply the standard Tikhonov 
regularization for each pair (kx,ky). The Singular Value 
Decomposition (SVD) is a mathematical tool used to apply 
the regularization. The SVD of a matrix h is 

  Hh = U S V                              (12) 

where S is the diagonal matrix of the singular values of h, 
U and V are the singular matrix associated and are 
orthonormal. VH is the transconjugate of the matrix V. The 
inverse of h is  
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The solution of Eq.(8) can be written as 
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It has been shown [8] that the regularization will act as a 
filter on the singular values of h 

1

.  
HN
i

i i
i i

f
s=

=
u y

x v ,                         (15) 

where xλλλλ is the regularized solution and fi the coefficients of 
the regularization filter. In the case of the standard 
Tikhonov regularization, the filter coefficients fi are 
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To estimate the regularization parameter we used the 
General Crossed Validation, which consists in minimizing 
the function G defined by: 

2

2

2( ( ))
G

tr
≡

− -1

hx - y

I hh
,                         (17) 

where I is the identity matrix and hλλλλ
-1 is the regularized 

inverse of h  

≡ -1x h y .                         (18) 

Once the regularization parameter λ is determined, the 
regularized solution is given by Eq.(15) where the filter 
coefficient are calculated with Eq.(16). The method 
presented in this section is used to solve the inverse 
problem related to Eq.(1) yielding the backpropagated time-
dependent wavenumber spectrum on the source plane. 
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5 Processing of the impulse response 

It has been shown [9] that the direct sampling of the 
impulse response may leads to distorsion even if the 
sampling rate is relatively high. This is due to the fact that 
the impulse response is defined by an analytical 
formulation and thus have an infinite frequency band. 
Oversampling the impulse response may reduce these 
distorsions but as shown in Fig.3 the impulse response 
obtained is not satisfactory. In this section we introduce 
different processing applied to the impulse response in 
order to remove these distorsions. If we note  

( ) ( ) ( ), , , ,r rh t t g tτ δ τ τΩ = − − Ω                 (19) 

which is derived from Eq.(4), where 
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Instead of using g[n], the direct sampling of g(t) at the time 

t=n t, it is possible to use the mean value [ ]g n  computed 

into an interval t centered at t=n t

[ ] ( )/ 2

/ 2

1 n t t

n t t
g n g t dt

t

Δ +Δ

Δ −Δ
=

Δ
.                      (21) 

The integral in Eq.(21) is approximated by the trapezoidal 
formula. 

Another processing consists in increasing the sampling rate 
of the impulse response by a factor D yielding a new 
sampling frequency fe’=Dfe. Thus the impulse response is  
calculated on D×N samples and then decimated by a factor 
D so the sampling frequency fe’/D matches fe. This 
processing involves a low-pass filter on the upsampling 
impulse response before applying the decimation. Two 
filters have been experimented, a Chebyshev filter and a 
Kaiser-Bessel window assiociated with a cardinal sine 
defined by 

( )
( )( )

( )
( )

2
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2

0
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w t

I t

β απ
τ

β π

−
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where I0 is the modified Bessel function of the first kind 
and order 0. T is the duration of the Kaiser-Bessel window. 

 is linked to the cut-off frequency of the low-pass filter 
and  is the parameter which sets the sidelobes of the 
window. The low-pass filter is applied to the impulse 
response  using  convolution yielding the filtered impulse 
response gf(t) which can be implemented by using the 
discrete sum 

[ ] [ ] [ ]f
m

g n w m g n m= − ,                     (23) 

or by using the numerical approximation of the following 
integral given by the trapezoidal method 
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Another method to build the impulse response is based on 
the Fourier transform of the Eq.(1) yielding 

( ) ( ) ( ), , , , , , , ,x y f x y m rP k k z P k k z Hω ω τ ω= Ω       (25) 

Eq.(25) is equivalent to the relation between the known 
pressure field on a plane z=zm and the pressure on a plane 

z=zf when the studied stationary acoustic sources are 
confined on the half plane z  zs  

( ) ( ) ( ), , , , , , , ,x y f x y m p rP k k z P k k z G k zω ω ω= Δ  ,   (26) 

where Gp is the propagator defined by 
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Comparing Eq.(25) and  Eq.(26) allows us to estimate the 
frequency response H( r, , ) as 
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The impulse response is finally obtained by applying an 
inverse Fourier transform to the frequency response 
H( r, , ). 
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Fig.3 Modulus and phase of the transfer functions 
H( r, , ) computed with oversampling method (blue), the 
average method (cyan), the Chebyshev filtering (green), the 

numerical Kaiser method (red) and from Eq.(19) (----).  

6 Numerical results 

6.1 Setup 

The setup of the numerical simulations is shown Fig.4. The 
source plane positionned at zs=0m is composed of three 
monopoles at the positions S1(0.3m, 0.4m, 0m), S2(0.7m, 
0.7m, 0m) and S3(0.3m, 0.7m, 0m). S1 and S2 generate a 
signal with a linear frequency modulation and a gaussian 
amplitude modulation. S3 radiates a Morlet wavelet defined 
by 

( ) ( ) 2 2

3 cos 2 tS t ft eπ −= .                        (29) 

These sources have been chosen because of their non-
stationnary properties. 

The first step consists in simulating the pressure pr(x,y,zm,t)
acquired by a 11×11 microphone array on the measurement 
plane zm=0.0215m. This pressure will be considered as the 
reference pressure. The second step is to use the forward 
propagation presented in Section 1 associated with the 
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different processing of the impulse response introduced in 
Section 5 to obtain the pressure on the forward plane 
zf=0.0860m. Finally the back-propagation combined with 
the standard Tikhonov regularization as shown in Section 4 
is used to calculate the pressure p(x,y,zm,t) with 

z=0.0645m. The emitted and calculated signals are 
sampled at a frequency rate fe=16000Hz giving 256 
samples. 

Fig.4 Geometry of the numerical simulations. 

6.2 Indicators 

In order to compare the effectiveness of the different 
processing applied to the impulse response we used two 
temporal indicators T1 and T2 defined by 

( ) ( )
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1
2 2

, , , , , ,

, , , , , ,

r m m

r m m

p x y z t p x y z t
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= ,                       (31) 

where  is the mean value, pr(x,y,zm,t) is the reference 

time-dependent pressure and p(x,y,zm,t) is the time-
dependent pressure calculated by the back-propagation. T1

is a correlation coefficient which is sensitive to the 
similarity between the shapes of the signals and thus 
between their phase difference. T2 is the ratio between two 
root square mean values to characterize the similarity of the 
amplitudes of both signals. 

6.3 Results 

The values of the indicators T1 and T2 for the three 
locations M1, M2 and M3 are summarized in Table 1. The 
processing used in these simulations involving 
regularization are the following: 

• D is the direct sampling of the impulse response 
fe=16000Hz. 

• O is the oversampling of the impulse response 
with a sampling rate frequency fe=64000Hz. 

• A is the average method using the mean value 

[ ]g n according to Eq.(21). 

• C is the decimate method with a factor D=8 
combined with a Chebyshev low-pass filter. 

• K is the low-pass filtering using the Kaiser-Bessel 
filter with a cut-off frequency fc=6640Hz and an 
upsampling factor D=2. 

• F is the impulse response obtained by applying an 
inverse Fourier transform on the frequency 
response H( r, , ) defined in Eq.(28). 

M1 

D O A C K F 

T1 0,670 0,888 0,982 0,995 0,995 0,996 

T2 1,124 0,968 1,125 1,134 1,144 1,143 

M2 

D O A C K F 

T1 0,678 0,903 0,975 0,996 0,991 0,993 

T2 1,115 0,971 1,114 1,124 1,131 1,131 

M3 

D O A C K F 

T1 0,629 0,859 0,994 0,992 0,999 0,999 

T2 1,040 0,902 1,094 1,082 1,104 1,103 

Table 1 Indicators T1 and T2 at the three different locations 
M1, M2 and M3. 

The comparaisons between the reconstructed temporal 
pressure signals obtained with the direct sampling of the 
impulse response (in blue) and the filtering of the impulse 
response with a low-pass Kaiser-Bessel filter (in black) 
versus the reference signal (in red) are shown in Fig.5, 
Fig.6 and Fig.7 at the three different locations M1, M2 and 
M3. 

Fig.5 Reconstructed temporal pressure signals obtained 
with method D (in blue) and with method K (in black) 

versus the reference signal (in red) for location M1. 

Fig.6 Reconstructed temporal pressure signals obtained 
with method D (in blue) and with method K (in black) 

versus the reference signal (in red) for location M2. 
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Fig.7 Reconstructed temporal pressure signals obtained 
with method D (in blue) and with method K (in black) 

versus the reference signal (in red) for location M3. 

7 Conclusion 

The deconvolution problem related to Real-Time Nearfield 
Acoustic Holography is an “ill-posed” problem and thus 
requires specialized processing. An effective method to 
solve this problem have been introduced in this paper using 
the standard Tikhonov regularization combined with the 
General Crossed Validation (GCV). We then introduced 
different methods to reduce the distorsions introduced by 
sampling the impulse response. We have shown that 
filtering the impulse response with a Kaiser-Bessel low-
pass filter or using the inverse Fourier transform of the 
frequency response H( r, , ) give accurate results in the 
case of Real-Time Acoustic Holography.  
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