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The aim of this work is the analysis of damage development and time-to-failure mechanisms within fibre-matrix 
composite materials using in situ ultrasonic sensors. Thus Acoustic Emission (AE), which represents the 
generation of transient ultrasonic waves in a material under load, is used to discriminate the different damage 
mechanisms in composite materials. In this work, unsupervised pattern recognition analyses (fuzzy c-means) 
associated with a principal component analysis are used for classifying the AE events. A cluster analysis of AE 
data is achieved and the resulting clusters are correlated to the damage mechanisms of the material under 
investigation. This method gives accurate results on complex composite materials such as glass fibre/polyester 
cross-ply composites, sheet molding compound (SMC), concretes... Furthermore, AE signals of heterogeneous 
materials are not stationary. Thus, time-scale or time-frequency methods (continuous and discrete wavelet 
transforms) are used to determine new relevant descriptors from AE signals. These new descriptors are 
introduced in the clustering process to provide a better characterization and discrimination of the different 
damage mechanisms.  

1 Introduction 

Glass fiber reinforced polymer composite materials are 
extensively used in industry. However, their damage and 
time-to-failure mechanisms still require a better 
understanding. Acoustic Emission (AE), which represents 
the generation of transient ultrasonic waves in a material 
under load, is a useful tool for non destructive testing [1]. It 
is used in this paper to identify the most critical damage 
mechanisms occurring in these materials in order to 
estimate their remaining lifetime in a non-destructive way. 
One of the main issues is to discriminate the different types 
of source mechanisms from the detected AE signals which 
are characterized by multiple relevant descriptors.  
Most studies so far have used AE descriptors such as the 
amplitude and the energy of the signal to characterize the 
development of damage [2,3]. In order to improve these 
analyses, it is possible to consider all descriptors with  
multivariable data analyses [4]. Thus, each AE signal are 
associated to a pattern composed of multiple descriptors. In 
the feature space, the patterns can be divided into clusters 
representative of damage mechanisms according to their 
similarity by the use of pattern recognition algorithms.  
In order to improve the classification for complex 
composite materials, fuzzy C-means clustering [5] 
associated with a principal component analysis (PCA) [6]  
are proposed in this paper. The fuzzy C-means clustering 
method is an effective unsupervised algorithm for 
automatic clustering and separation of AE events based on 
multiple features extracted from the random AE 
waveforms. The PCA is first used to give an idea of the 
relevance of the descriptors. If the representation in the 
projection space shows several clusters with a minimum 
overlap between them, the features could lead to classify 
the damage mechanisms. The clustering data obtained with 
the fuzzy C-means are also visualized in the projection 
space given by the PCA.  
The proposed method, applied on different composite 
materials such as SMC and cross-ply composites, leads to 
the identification of the damage mechanisms and their 
evolution with time till the sample failure. 
 
However AE signals in composite materials mainly result 
from the energy release of failure modes and are usually not 
stationary. Thus, waveform processing of AE signals based 
on time-scale [7] or time-frequency analysis appears as a 
very promising signal processing technique to discriminate 

fracture mechanisms. Some previous works have shown 
that the continuous and discrete wavelet transforms can 
provide relevant information from AE signals to 
discriminate the damage types [8,9].  
In this paper, we investigate this point and we use two 
wavelet transforms in order to define new relevant time-
scale descriptors to improve the characterization of damage 
mechanisms. Classification results obtained with time 
features and then with time-scale descriptors are compared 
and confirm the improvement of the discrimination. 

2 Multivariable data clustering 

Multivariable analyses provide a data classification. 
Similarities are found between data clusters in a 
multidimensional space with the use of several features. 
Applied to AE, these methods permit to identify, within 
multiple parameters, signal clusters with similar features 
and thus characterizing the same source damages in a 
material. 
The parameters collected from AE waveforms are the 
components of an input pattern vector. Each component 
provides information from the AE signals such as the 
amplitude of the signal, its energy... To make this study as 
general as possible we used an unsupervised pattern 
recognition analysis: the fuzzy C-means clustering method 
(FCM) [4,5]. It uses fuzzy partitioning so that each pattern 
vector can belong to all clusters with different membership 
grades between 0 and 1. The input parameter of the 
algorithm is the number of clusters. Each cluster resulting 
from the classification corresponds to a different damage 
mechanism identified in the material. In order to associate 
each output cluster of the algorithm to the corresponding 
damage mechanism, the distribution of the amplitude is 
computed. Indeed, the amplitude of each signal is one of 
the most relevant time-based descriptor. The distribution of 
the amplitude of each obtained cluster is compared to other 
results found in the bibliography relative to characteristics 
of damage types of composite materials [2,3,8,10]. Thus, 
we can associate each resulting cluster to the corresponding 
damage type. 
A principal component analysis is applied on the matrix 
composed of the time-based parameters collected from AE 
waveforms. The PCA projection shows the distribution of 
the data. If the data do not overlap, an automatic 
classification should be possible. Thus, we can deduce the 
most relevant temporal descriptors to be used in the 
clustering. The PCA shows that the temporal descriptors 
can separate the damage mechanisms. In addition, once the 
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automatic classification is realized with the fuzzy C-means 
clustering method, we use the PCA to visualize the clusters 
of data into a two-dimension subspace. 
The fuzzy C-means clustering method requires the 
knowledge of damage mechanisms in the materials as each 
cluster corresponds to a different damage mechanism. This 
method has been validated on well-known unidirectional 
fibre composite materials and provides fair results even for 
more complex materials such as cross-ply composites or 
SMC [9]. This method enables to identify and monitor in 
real time several damage mechanisms at the microscopic 
scale. 
 

3 Wavelet analysis 

AE source identification of composite materials is usually 
based on temporal features of AE waveforms. However, 
AE signals generated within local displacements inside 
materials (microcracks, etc) are generally not stationary. 
That is why wavelet transforms are applied in order to 
identify the different damage mechanisms as, in addition, 
the temporal descriptors are not always relevant. The two 
types of wavelet transforms: continuous and discrete are 
well adapted to our problem [8,9] and are used to extract 
quantitative descriptors in order to improve the 
discrimination of damage mechanisms within composite 
materials. 
 
The continuous wavelet transform (CWT) of a signal f(t) is 
defined as follows [7]: 
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with the scale parameter a, the time translation factor b, the 
analyzing wavelet ψ and * represents the complex 
conjugation. The first feature extracted from the CWT is 
the sum of the square moduli of CWT coefficients defined 
as [9]: 
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The second feature is the maximum of the square moduli of 
CWT coefficients [9]: 
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f1 and f2 are calculated for each scale on a limited time 
duration Ib. This duration is set from an adaptive threshold 
which corresponds to a percentage (10%) of the maximum 
amplitude of the wavelet coefficients. The duration of the 
AE signal Ib corresponds to the time during which the 
amplitude of the wavelet coefficients goes beyond the 
threshold. Then the features corresponding to the most 
energetic scale are selected as new descriptors. 
 
The discrete wavelet transform (DWT), which enables to 
decompose each signal on a wavelet basis, is defined as [7]: 
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with the scale parameter j, the time translation factor k, the 
analyzing wavelet ψ and the analyzed signal f(t). The DWT 
decomposes f(t) on a wavelet basis referring to different 
continuous frequency bands, called wavelet levels [7]. The 
original signal passes through two complementary filters 
and two signals are obtained, corresponding to the 
approximation and detail coefficients. The approximations 
are the high scale, low frequency components of the signal 
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and j is the level of decomposition. 
The DWT could also provide new relevant descriptors to 
add in the clustering analysis. Thus, an another feature is 
defined: the maximum of the square detail coefficients for 
each level of decomposition. This new descriptor is defined 
as follows [9]: 

 ),k)(j,(DWTmax=(j)f 2
fk3  (5) 

with DWTf(j,k) detail wavelet coefficients of each level of 
decomposition j. This descriptor f3 is calculated for the 
levels of decomposition with the most significant 
amplitudes. 

4 Results and discussion 

4.1 Materials, testing procedure and 
acoustic emission 

The experimental work is carried out on glass fiber 
reinforced polymer composite materials. Complex 
composite materials are studied: cross-ply composites. 
Cross-ply laminates noted [±90°]8 consist of 8 layers of 
unidirectional reinforcement at ±0° and ±90°  to the loading 
direction. The composite materials samples are in 
parallelepiped form and have dimensions 21×280×2 mm3. 
 
An external load applied to the composite materials results 
in several damage mechanisms occurring at a microscopic 
scale. Some damage mechanisms are predominant 
depending on the composite materials and the fibre 
orientation in comparison with the loading direction. In this 
study, cross-ply composite materials are damaged with 
static three-point bending tests. Experiments are performed 
at room temperature using a servo-hydraulic Instron 
universal testing machine with a 5 kN capacity. The 
crosshead speed of the machine is fixed at 0.05 mm/min.  
 
Simultaneously, transient ultrasonic waves generated by 
damage creation and propagation within the materials were 
recorded using AE two channel data acquisition system of 
Euro Physical Acoustics company (EPA). AE is used to 
discriminate the different damage mechanisms and permits 
real-time monitoring of damage growth by the analysis of 
these generated ultrasonic waves. AE measurements are 
achieved by using two piezoelectric sensors with a 
frequency range 100kHz - 1MHz, coupled on the faces of 
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the specimens with silicon grease. To eliminate background 
noise, we included an amplitude threshold of 42dB, where 
0dB corresponds to 1µV. The data acquisition system is 
used to record AE data such as temporal descriptors and 
waveforms of each AE signal with a sampling rate of 
5MHz and 40dB pre-amplification. Several time-based 
descriptors are calculated by the acquisition system for each 
AE event (Fig.1): maximum amplitude, energy, duration, 
rise time, number of peaks whose amplitudes is higher than 
the given amplitude threshold (called counts), etc. These 
collected features as well as the new time-scale descriptors 
are used as input parameters in the proposed classification 
method. 

 
Fig.1 Common waveform descriptors calculated by the AE 

acquisition system for each AE event. 

4.2 Classification results 

In this section, we present a comparison between the PCA 
results for clustering represented in two feature spaces: first 
with the use of the traditional temporal AE features, then 
with the use of the new time-scale descriptors. The analysis 
is applied to random AE events collected from a static 
three-point bending test on an actual material as the cross-
ply composite material. This method was first validated in a 
previous study on a sample of known AE signals [9]. 
 
Two damage mechanisms, matrix cracking (called A 
signals) and fiber-matrix debonding (B signals), are 
identified on 729 AE events from a static three-point 
bending test on a cross-ply composite material. In this 
experiment, because of the low thickness of the samples no 
delamination was generated. Figure 2 presents the force 
applied on the material during the test time and the AE hits 
collected. Two typical signals representative of matrix 
cracking and interfacial debonding are represented in figure 
3.  
 
Thus, FCM is applied with two clusters corresponding to 
the two damage types. The traditional temporal AE features 
are first used to build patterns. Five descriptors are used: 
energy, amplitude, rise time, counts and duration of the 

  
Fig.2 Force and number of AE hits of three-point bending 

test on a cross-ply composite material. 

 
Fig.3 AE typical signals: matrix cracking (A signal) and 

fiber-matrix debonding (B signal). 

signals (Fig.1). A PCA is achieved in order to visualize the 
results in a two-dimension subspace (Fig.4). The PCA 
projection shows that two clusters are well identified but 
some patterns are mixed with each other. Thus, with the 
temporal descriptors, the separation between the patterns is 
not effective in this area. In order to improve the clustering, 
new relevant descriptors defined from wavelet analyses are 
used to build patterns used for the automatic classification. 

 
Fig.4 PCA visualization of the fuzzy C-means clustering 
with temporal descriptors of three-point bending test on a 

cross-ply composite material (90% information kept). 
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In what follows, the time-scale descriptors presented above 
(f 1, f 2, f 3 and Ib) are used for the classification. The PCA 
results for clustering on the same AE data set are also given 
in figure 5. The two damage mechanisms are well identified 
in the material. Indeed, the PCA projection highlights the 
similarities between the patterns. In addition, there is no 
overlap between the data with these time-scale descriptors. 
Thus, the data classificiation and the identification of the 
different damage mechanisms are improved. The two 
classifications provided by clustering are different: 2.5% 
less patterns are classified as B signals (debonding) with the 
use of temporal descriptors. 

 
Fig.5 PCA visualization of the fuzzy C-means clustering 

with time-scale descriptors of three-point bending test on a 
cross-ply composite material (94% information kept). 

The classification also allows us to follow the time 
dependency of the two damage types in the material (Fig. 
6). This visualization shows that the matrix cracking is the 
most important damage mechanism as it begins from the 
start of the test and involves much more numerous events. 
The interfacial debonding appears in the middle of the 
experiments and their number increases till the final failure 
of the material. 

 

Fig.6 Time dependency of the identified damage of three-
point bending test on a cross-ply composite material. 

 

5 Conclusion 

Fuzzy C-means clustering method has been coupled with a 
principal component analysis to discriminate the different 
damage mechanisms from the AE signals and to visualize 
the classification into classes. Clustering, applied with the 
typical temporal descriptors of AE waveforms, permits to 
identify the different damage mechanisms in complex 
composite materials such as cross-ply composites. Wavelet 
analyses applied to transient AE signals permits to define 
new relevant time-scale descriptors. The use of those new 
descriptors in the clustering method improves the 
identification of damage mechanisms of complex 
composite materials. This method also leads to the time 
evolution of damage types in these materials till the final 
failure. Thus, the most critical damage sources in a 
composite material can be identified. The perspectives of 
this work are to apply clustering to different complex 
composite materials in which different damage types can 
occur when damaged. The identification of damage sources 
with time could permit to estimate the remaining life time 
of materials.  
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