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In order to continually improve passenger car acoustic comfort, effective methods are needed to simulate the 
noise generated by external flows as well as the noise produced by duct flows in HVAC systems. This paper 
presents the application of two computational aeroacoustic methods based on the Linearized Euler Equations 
(LEE) including 1st order non linearities and Acoustic Perturbation Equations (APE) to compute the acoustic 
field produced by a flat plate in a two-dimensional duct with a thickness related Reynolds number of 1300. The 
two methods used to investigate the noise produced are the injection of a single test-vortex in the flow and the 
stochastic sound source modelling by Ewert [1]. It can be shown computationally that even in the absence of the 
classical Aeolian tone generation resonance type phenomena occur in the duct. This paper shows the ability of 
both methods to simulate with accuracy resonance phenomena identified as Parker type modes [2]. The 
frequency and mode representation computed by both methods are in good agreement between them but also 
with the analytical work done by Koch [3]. 

1 Introduction 

Improving passenger car acoustic comfort is nowadays a 
prime focus but require also the development of efficient 
numerical methods to simulate the noise produced by 
external flows as well as duct flows in HVAC system in the 
early phase of the vehicle development. Large Eddy 
Simulation [4] and Direct Numerical Simulation have 
produced good results for basic applications but hardly time 
and resources consuming these methods do not seem 
currently suitable to industrial cases. 
An alternative approach consists in using steady flow 
simulation and an acoustic code based on Linearized Euler 
Equations to compute the acoustic field. To simulate the 
acoustic field, Lummer et al. [5] proposed to inject a vortex 
in the flow to generate noise by interacting with the 
geometry. Béchara et al. [6] introduced a stochastic model 
using a superposition of Fourier modes to synthesize a 
stochastic velocity field describing turbulence as the noise 
source for free turbulent flows. Recently, Ewert [1] 
developed a new method called Random Particle-Mesh 
(RPM) to set up the fluctuating turbulence velocities for 
broadband source noise based on the spatial filtering of 
white noise. 
At low cruising speed, HVAC systems are generally 
considered as important sources of noise by car passengers. 
The aim of this paper is then to examine the possibility of 
using the test-vortex injection technique and the RPM 
method to compute the acoustic field generated by the flow 
in a duct. The geometry chosen is a 2D duct with a rounded 
edge thin flat plate located midway between the duct walls 
and at a zero angle of incidence (Fig.1). The flat plate is  
0.1 m long and 2 mm thick while the duct is 0.8 m long and 
0.08 m wide. The tests were carried out using the DLR’s 
CAA code PIANO (Perturbation Investigation of 
Aerodynamique NOise). 

 
Fig.1: Duct geometry (point A is located at 80% of the 
chord length and point B is at 25% of the duct height) 

Studying flow on parallel plates, Parker [3,7] showed the 
existence of resonances almost entirely caused by 
acoustical effects and having little or no relation to 
mechanical vibration of plates. Later, Koch [3] proposed 

analytical formulations to predict the acoustic resonance 
frequencies of plate cascade. Welsh et al. [8] analyzed the 
effect of the flow velocity on the different Parker modes in 
a duct containing a flat plate and pointed out that by 
modifying the flow velocity, the vortex shedding frequency 
could lock up/down to the acoustic resonant frequency.

2 Method 

2.1 Calculation of the mean flow 

A steady state flow field is required to initiate the acoustical 
calculation. The steady flow field in the duct was computed 
using the SST-Model developed by Menter [9] on a block 
structured grid composed of 158600 nodes. Three different 
mean flow speeds were tested: 1, 5 and 10 m/s 
corresponding respectively to Reynolds numbers based on 
the thickness of the flat plate of 128, 640 and 1300. The 
flow streamlines and the pressure coefficient (Cp) 
distribution of the steady mean flow are presented on Fig.2. 

 
Fig.2: Steady RANS mean flow for Re = 1300; 

pressure coefficient Cp and streamlines 

2.2 CAA Calculation 

In comparison to CFD grids, CAA grids are designed with a 
more uniformed resolution and the grid clustering is 
reduced close to the walls. The steady RANS solution has 
to be interpolated on the acoustic grids. The effect of the 
grid’s refinement on the acoustics results has been studied. 
Only minor dependencies could be identified and will not 
lead to further discussion in this paper. The structured grid 
used was composed of 12 blocks and 41900 cells. 
The acoustic computation has been performed with an 
overall damping and no filtering. Sponge layers were 
placed at the inlet and outlet to avoid back waves. The 
spatial derivatives were approximated by the 4th order DRP-
scheme [10] and the time integration is done by the 
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standard 4th order Runge-Kutta procedure. The numerical 
methods applied within PIANO are described in [11]. 

2.2.1 Single test-vortex injection 

The interaction of vorticity with any object is a well known 
mechanism of sound generation and can be used to simulate 
the acoustic field generated by the flat plate in the duct. The 
method consists in injecting a single vortex in the flow 
which will generate noise by interacting with an obstacle. A 
detailed explanation of the test-vortex injection method is 
given by Lummer et al. [5]. Fig.3 shows the initial vortex 
(and the dimensionless1 vorticity) positioned on the median 
line of the duct and 0.05 m forward the leading edge. Its 
length scale was set to r0 = 5×10-2 chord length while its 
dimensionless strength was set 0.1 and the level of non-
linearity introduced in the Euler equations was set to 10%. 

 
Fig.3: Initial vortex shown as dimensionless vorticity 

distribution 

2.2.2 Random Particle Mesh (RPM) 

Described in details in [1], the new stochastic RPM method 
is based on the spatial filtering of white noise and uses the 
Acoustic Perturbation Equations (APE) [12]. 

 
Fig. 4: Patch used for RPM (Re=1300); 

distribution of the dimensionless kinetic energy 

A patch containing the noise sources is required to use the 
RPM model. Fig.4 presents the dimensionless turbulence 
kinetic energy and the position of the patch on which the 
turbulent velocity field is reconstructed. The patch is 
composed of 40×200 cells. Use of the symmetry was done 
to design the patch. 

3 Results 

3.1 Basic phenomena 

In order to study the modes and resonances occurring in the 
duct, two ‘virtual’ pressure probes have been defined 
(Fig.1). The point A is positioned under the flat plate at 

                                                           
1 Dimensionless quantities are calculated using the speed of sound, 
ambient pressure and density 

80% of the plate’s chord and 25% of the distance between 
the wall and the plate. The point B is placed behind the flat 
plate at 3.5 times the flat plate length and at 25% of the 
duct height. 

 
Fig.5: Temporal signal at point A (test-vortex method) 

Umean = 10 m/s and Plate length = 0.1 m 

Fig.5 shows the temporal signal computed at both points A 
and B with the test-vortex injection method for a mean flow 
velocity of 10 m/s and a plate length of 0.1 m. The transient 
part in black corresponds to the interaction between the 
initial vortex and the geometry. In the following, only the 
steady phase (in red) has been used to calculate the 
spectrum. The spectrum was obtained by multiplying the 
complete pressure signal by a Hanning window and 
followed by a fast Fourier transform resulting in a complex 
spectrum for which the magnitude is shown as sound 
pressure level in the following. 

 
Fig.6: Spectra at points A and B (test-vortex method) 

Umean = 10 m/s, plate length = 0.1 m 

The spectra at points A and B for a vortex injection 
simulation have been plotted on Fig.6. The dimensionless 
frequency defined by Koch [3] as 00* adff  was used 
with d0 the height of the duct and a0 the sound velocity. 
Represented on Fig.7 and identified by (I) on Fig.6 (f* = 
0.21), a vortex street due to the LEE develops behind the 
flat plate at a frequency of 905 Hz (corresponding to a 
Strouhal number based on the flat plate thickness of 0.18). 

Fig.7: Vortex street St = 0.18 (Re = 1300 and Lplate = 0.1m) 

The harmonics of this frequency are identified on Fig.6 by 
the capital roman numbers. Obtained by carrying out a FFT 
on every node of the mesh, Fig.8 gives a representation of 
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the different modes or resonances. The first cut-on 
frequency (n=1) corresponds to f* =0.5 for the low Mach 
number used. Above this frequency, propagating wave can 
be identified from the pictures. (II) and (III) are examples 
of combinations of harmonics and duct modes. The wave 
length for a given Mach number (M) of the duct mode can 
be calculated using Eq.1. 
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The two principal  and  Parker mode [2] have also been 
identified for respectively dimensionless frequencies of 
0.28 and 0.5. Finally, peaks designated by small numbers 
may be combinations of tones from the vortex street and the 
Parker modes while small letters corresponds to modes 
associated to the geometry of the duct or to combination of 
duct and Parker modes. 

 
Fig.8: Map of the SPL for resonances and duct modes 

(Umean = 10 m/s); colors of the maps are not comparable due 
to different scaling ranges 

 
Fig.9: Spectrogram at the point A (vortex method) 

Umean = 10 m/s, Plate length = 0.1 m 

The spectrogram of the pressure signal for the point A is 
presented on Fig.9. In addition to the main frequencies, one 

can notice that as expected the intensities of  and  Parker 
modes (black ellipses) decrease over the time after the 
passage of the perturbation (vortex) due to radiation losses. 

3.2 Single test-vortex injection 

3.2.1 Effect of the Reynolds number 

Fig.10 presents the spectra computed at point A for the 
same geometry and mesh resolution but at three different 
mean flow speeds. For a mean flow speed of 1 m/s, the 
acoustic level is much lower (about 100 dB) than for 10 m/s 
and no vortex street as well as no Parker modes has been 
observed. Only a duct mode is still present at f* = 0.7. At  
5 m/s the main frequency of the vortex street is visible at 
lower frequency but not the harmonics due to the weak non 
linearity, however, the level associated to the  and  
Parker modes are present at the same frequencies as well as 
the duct modes. 

 
Fig.10: Spectra for 3 different mean flow velocities at  

point A for a plate length of 0.1 m (test-vortex method) 

3.2.2 Effect of the flat plate length 

For each plate length, the point A is positioned at 80% of 
the chord length. The spectra computed at point A for the 
three different plate lengths have been plotted on Fig.12. 
The frequency associated to the vortex street varied with 
the length. 

 
Fig.11: Spectra for 3 different plate lengths at point A  
for a mean flow speed of 10 m/s (test-vortex method) 

V = 10 m/s V = 5 m/s Plate length 

f* St f* St 

0.05 m 0.24 0.205 0.106 0.18 

0.10 m 0.21 0.184 0.092 0.156 

0.18 m 0.19 0.166 0.085 0.145 

Table.1: Strouhal number of the vortex shedding 
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Table 1 gathered the frequencies and the Strouhal numbers 
(St) calculated using the thickness of the flat plate for each 
configuration. As expected [13], the smaller the plate 
length, the closer the Strouhal number is to the standard 
values of 0.2 for a cylinder. 
On Fig.11, one can also see that the frequencies associated 
to the different Parker modes varied with the flat plate 
length. For the longer plate, the frequency of  Parker mode 
is very close to frequency of the vortex street and hardly 
visible of the graph. Such proximity could be an example of 
the lock up phenomena described by Welsh et al. [10]. A 
representation of different Parker modes computed for the 
different flat plate length is done on Fig.12. The mode (2,0) 
described by Koch can also be identified. 

Short Plate (mode ) 

 
Medium Plate (mode  and ) 

 

 
Long Plate (mode ,  and (2,0)) 

 

 
Fig.12: Maps of Parker modes simulated by test-vortex 
injection (Umean = 10 m/s); colors of the maps are not 

comparable due to different scaling ranges 

3.3 RPM model 

3.3.1 Effect of the Reynolds number 

 
Fig.13: Spectra for 2 different mean flow velocities at  

point A for a plate length of 0.1 m (RPM) 

Fig.13 presents the spectra obtained at point A for two 
different mean flow velocities. One can firstly remark, that 
due to the use of APE formulations, the peak corresponding 
to the vortex street is not present on the spectrum. Like with 
the previous method, the frequencies of the Parker modes 
do not change while their intensities decrease with the mean 
flow speed. At opposite to the test-vortex injection method, 
the Parker modes can also identified for a mean flow speed 
of 1 m/s. The overall lower noise level at a lower speed 
makes then possible to see duct modes hidden previously. 

3.3.2 Effect of the flat plate length 

Fig.14 presents the spectra at point A for the three different 
flat plate lengths computed for a mean flow speed of  
10 m/s while on Fig.15 are represented the map of the 
Parker modes. As with the test-vortex injection, the  
Parker mode is present for the three flat plate lengths. At  
f* = 0.5, the modes  and (2,0) are present for respectively 
the plate length of 0.1 and 0.18 m. 

 
Fig.14: Spectra for 3 different plate lengths at point A  

for a mean flow speed of 10 m/s (RPM) 

Short Plate (mode ) 

 
Medium Plate (mode  and ) 

 
Long Plate (mode ,  and (2,0)) 

 

 
Fig.15: Maps of the Parker modes simulated by RPM 

(Umean = 10 m/s), colors of the maps are not comparable 
due to different scaling ranges 
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3.4 Single test-vortex injection vs. 
Random Particle Mesh methods 

Fig.16 presents a representation of the spectra calculated at 
point A for the same configuration with the two different 
methods. It appears that the two main Parker modes are 
well computed with both methods. The maps of the modes 
represented on Fig.11 and 15 are extremely similar 
although the absolute level cannot be compared. The results 
of the test-vortex injection method are dependant on the 
initial intensity of the vortex making any comparison of the 
absolute level computed by the two methods not possible. 
Lastly, due to the synthesized turbulence, the RPM model 
produced a higher ground noise. Other duct are therefore 
more difficult to identify. 

 
Fig.16: Comparison of the spectra obtained with the test-
vortex and RPM methods at point A for a plate length of 

0.1 m and a mean flow speed of 10 m/s 

Fig.17 gives the evolution of the Parker against the ratio 
l0/d0 for a Mach number close to 0 after Koch [3]. The 
computed frequencies by the two previous methods have 
been also plotted on this graph. 

 
Fig.17: Evolution of the Parker Mode against the ratio l0/d0 

after Koch [3] on which has been added the computed 
frequencies (marked by color points for 3 plate lengths) 

The three dashed lines added on this graph correspond to 
the three flat plate lengths studied in this paper and the 
points correspond to the computed frequencies for both 
methods. From this graph, one can see that the results 
computed match well with the formulation by Koch for the 
low order modes. However higher duct modes could not be 
distinctly found by the simulations. 

4 Conclusion 

In this paper, two methods for aeroacoustic simulation have 
been tested using a simple test case of flat plate installed in 
a duct. Both methods have provided valuable results by 
predicting accurately the Parker modes for different 
configurations. The results of the simulations are 
particularly in good agreement with the calculation done by 
Koch.  
By definition, the absolute level of the noise cannot be 
obtained by the vortex method; however the modes and 
resonances can be easily predicted. In comparison, the 
acoustics Parker modes can similarly be well predicted with 
the RPM model. By using the APE, the vortex street was 
suppressed but a significant ground noise is produced due 
to the synthesized turbulence. 
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