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For the finite element method, reduction techniques exist to represent the dynamic behavior of com-
ponent substructures. The reduction basis of both the Craig-Bampton method and the Rubin method
contain component modes, which are computed for all structural degrees of freedom on an interface.
The interface can either be defined by adjacent substructures or by coupling interfaces to other physical
domains, as it is the case for FE-BE coupled systems. A large interface thus leads to an increased size
of the reduced order model and limits standard model reduction techniques to applications with small
interfaces. In this work, interface reduction methods are investigated, enabling an efficient solution of the
vibro-acoustic behavior of fluid-structure coupled systems. Here, the size of the reduced order model is
decreased by reducing the number of retained interface modes, while marginally increasing the reduction
error. A direct reduction method based on strain–energy considerations is presented. Additionally, an
iterative reduction scheme is proposed which only adds a basis vector to the reduction basis, if the
spanned subspace is sufficiently enlarged. The applicability of the proposed methods is shown for an
example structure.

1 Introduction

The vibro-acoustic behavior of thin structures is signif-
icantly altered if they are partly immersed or totally
submerged in water. A strong fluid-structure interac-
tion is observed and the structural problem (domain
Ωs in Fig. 1) and acoustic problem (Ωa) can no longer
be solved separately. A strong coupling scheme has to
be applied, where the feedback of the hydraulic pres-
sure onto the structure at the fluid-structure interface
Γi is not neglected. The finite element method (FEM) is
widely used to simulate the dynamic behavior of struc-
tures. The boundary element method (BEM) shows its
strength for the solution of the exterior acoustic prob-
lem, since its fundamental solution intrinsically fulfills
the Sommerfeld radiation condition. In [1] a fully cou-
pled FE-BE formulation is investigated and different
solver strategies for an efficient solution of large-scale
systems are discussed. For large structural problems,
the treatment of the FE-part is expensive and in the low-
frequency regime may be a dominant part of the solu-
tion process. Component mode synthesis (CMS) meth-
ods exist, such as the Craig-Bampton method and the
Rubin method [2] which accelerate pure FE frequency
sweep computations. In case of FE-BE coupling the size
of the fluid-structure interface has a direct influence on
the size of the reduced-order model. This limits the use
of these CMS methods to systems with a small coupling
interface. For this reason interface reduction methods
(IR-methods) are developed, which significantly broad-
ens the range of use of CMS-methods [3].

This work focuses on FE interface reduction techniques
for the efficient solution of strongly coupled FE-BE sim-
ulations and is organized as follows: First the FE-BE

Γi

�tf

�tp

Ωs

Ωa
�n

p = 0

Figure 1: Domains of the coupled problem. The
exterior acoustic domain Ωa is in contact with the

structure Ωs on the fluid–structure interface Γi. The
stress vectors are denoted by �tf and �tp.

coupled formulation is briefly presented. Then, then the
Craig-Bampton method and the Rubin method are re-
viewed, which provides the basis for the subsequent IR-
methods. Two IR-methods, one for the Craig-Bampton
method and one for the Rubin method, are presented.
The reduction methods are applied to predict the vibro-
acoustic behavior of a partly submerged semi-ellipsoid
test structure and compared with respect to their accu-
racy and computation time to the full-order solution.

2 FE-BE coupled formulation

With the time-harmonic behavior e−jωt , the FE-formula-
tion in the structural domain Ωs reads

(
−ω2M− jωD + K

)
︸ ︷︷ ︸

KFE

u = −CFE p + f , (1)

where ω is the angular excitation frequency and j de-
notes the imaginary unit. In Eq (1), K and M are
the stiffness matrix and mass matrix, respectively. The
nodal displacement vector is given by u (∈ R

Ns) and f

(∈ R
Ns) denotes the nodal force vector. The acoustic

pressure p (∈ R
NI) is coupled to the structure via the

coupling matrix CFE. Hereby, Ns and NI are the num-
ber of degrees of freedom (DOF) of the whole structure
and of the fluid–structure interface, respectively. In this
work, structural damping is modeled by Rayleigh damp-
ing D = αM+βK. Since water is nearly incompressible,
the fluid formulation starts with the Laplace equation [4]

Δ2p(�x ) = 0 for �x ∈ Ωa , (2)

where p denotes the pressure and the Laplacian is given
by Δ2. The Laplace equation is valid for the pressure p
at an arbitrary point �x within the exterior acoustic do-
main Ωa (cf. Fig. 1) for an incompressible fluid. A weak
form of the Laplace equation is obtained by weighting
with the fundamental solution

P(�x , �y) =
1

4π r
−

1

4π r ′
, (3)

where r = |�x − �y | denotes the distance between the load
and the field point. The second term in (3) accounts for
the pressure-free boundary condition of the water sur-
face [5, 6]. Therefore, x is mirrored on the water sur-
face. The distance between the mirrored point x ′ and
the point y is given by r ′ = |�x ′ − �y |. Applying Green’s
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second theorem yields the representation formula, which
is valid for any �x in the acoustic domain Ωa. The hy-
persingular boundary integral equation is obtained from
the representation formula and reads

1

2
q(�x ) = −

∫
Γi

∂P(�x , �y)

∂�nx

q(�y) dsy︸ ︷︷ ︸
(K ′q)(�x)

+

∫
Γi

∂2P(�x , �y)

∂�nx∂�ny

p(�y) dsy︸ ︷︷ ︸
−(Dp)(�x)

,

(4)
where K ′ denotes the adjoint double layer potential and
D is the hypersingular operator. The variable q repre-
sents the acoustic flux, which is defined on Γi as q(�x ) :=
∂p(�x)/∂�nx . To obtain an algebraic system of equations
from Eq (4), the boundary Γi is discretized. The BE-
formulation for the acoustic fluid then reads

KBE p− (I−K′)︸ ︷︷ ︸
C

q

BE

q = 0 . (5)

Hereby, the Galerkin matrices KBE and K′ correspond
to the hypersingular operator and the adjoint double
layer potential, respectively. In order to obtain a FE-BE
coupled formulation a relation between the acoustic flux
q(�y) and the particle displacement �uf(�y) is established
using Euler’s equation. For triangular elements it reads

q(e) =
1

3

fω

2
∑
k∈e

uk
�n , (6)

where the variable k loops over all vertices of the se-
lected element e. The transformation is written in ma-
trix notation as q = Tqu where q denotes the vector
with the flux on the elements. The matrix Tq selects
only displacements of translational DOFs on Γi. By us-
ing this relation and Eqs. (1) and (5) the fully-coupled
Schur-complement system reads(

KBE −C
q
BETqK

−1
FECFE

)
︸ ︷︷ ︸

S

p = −C
q
BETqK

−1
FEf , (7)

with the vector of unknowns p and the Schur comple-
ment S. A single GMRES is directly applied for S, with
a simple diagonal scaling as a preconditioner for KBE.
This solution strategy turned out to be efficient [1]. To
speed up the solution process FE model reduction tech-
niques shall now be applied for a faster factorization of
KFE, which is needed for the solution of Eq. (7).

3 Model Order Reduction

Both the Craig-Bampton method and the Rubin method
are based on a consistent Rayleigh-Ritz coordinate trans-
formation

u = Θz , (8)

where z denotes the generalized coordinates and Θ is a
coordinate transformation matrix of component modes.
By left-multiplication of Eq. (1) with ΘT and making
use of Eq. (8), Eq. 1 is expressed in generalized coordi-
nates (

−ω2M̃− jωD̃ + K̃
)

︸ ︷︷ ︸
K̃FE

z = −ΘTCFE p + f̃ s , (9)

where M̃ = ΘTMΘ, K̃ = ΘTKΘ, and f̃ = ΘTf are the
reduced mass matrix, stiffness matrix and the load vec-
tor in the generalized coordinate system, respectively.
In contrast to the sparse matrices M and K, the dense
matrices M̃ and K̃ are fully populated. The Schur com-
plement formulation analogue to (7) then reads(
KBE −C

q
BETqΘK̃−1

FEΘTCFE

)
p = −C

q
BETuΘK̃−1

FEΘTf .

(10)

Without loss of generality, it will be assumed in the
following that M and K in Eq. (1) are partitioned as[

MII MIF

MFI MFF

] [
üI

üF

]
+

[
KII KIF

KFI KFF

] [
uI

uF

]
=

[
f I

fF

]
,

(11)
where uI contains displacements of all DOFs, which are
located on the FE-BE interface Γi, while uF contains
all displacements of free (or inner) DOFs. The vectors
uI and uF shall be of size NI and NF, respectively with
Ns := NI + NF.

Craig-Bampton and Rubin Method For the Craig-
Bampton method the component mode matrix is pop-
ulated by fixed-interface normal modes ΦCB and by
constraint modes ΨCB. The former are the NΦ

CB low-
est eigenvectors of the generalized hermitian eigenvalue
problem obtained by fixing all interface DOFs(
−ω2

CBj MFF + KFF

)
Φ̂CBj = 0, j = 1, 2, . . . ,NΦ

CB .
(12)

The later are determined by fixing all but one inter-
face DOFs and computing the static solution due to the
unit deflection applied at the remaining unfixed inter-
face DOFs. The coordinate transformation matrix is
thus given by

ΘCB =
[
ΨCB ΦCB

]
=

[
INI

0

−K−1
FFKFI Φ̂CB

]
(13)

In contrast to the Craig-Bampton method, the Rubin
method is a free interface method, i.e. neither the in-
terface DOFs nor the free DOFs are additionally con-
strained for the computation of the component modes
in ΘRu. The NΦ

Ru free-interface normal modes ΦRu

are computed by solving the eigenvalue problem of the
unconstrained system. Attachment modes ΨRu aug-
ment the component modes matrix accounting for the
modal truncation error. They are defined by the static
solution vector due to a single unit force applied to
one DOF on the interface. Attachment modes can-
not be computed directly, if the structure has rigid-
body degrees of freedom and thus rigid body modes Ψrb

(Ψrb ∈ R
Ns×Nrb , 0 ≤ Nrb ≤ 6). Instead of the stan-

dard attachment modes, either inertia-relief attachment
modes, residual flexibility attachment modes or shifted
attachment modes are used [2]. In this work shifted
attachment modes are employed. Thus, the transforma-
tion matrix is given by

ΘRu =
[
ΨRu sh ΦRu

]
. (14)

In both methods the size of the reduced order model is
directly related to the size of the interface. In case of
FE-BE coupling, where the fluid-structure interface may
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contain several thousand interface DOFs, both methods
no longer show a speedup comparing the solution time
of the sparse full-size model and the dense reduced-order
model.

3.1 IR-Methods

The key idea of the IR-methods is to find a dominant
subspace of the static component modes ΨCB and ΨRu,
respectively.

IR for the Craig-Bampton method In [3] it is sug-
gested to find the dominant directions with respect to
the K-norm. In contrast to the Euclidean norm, this
norm accounts for the different scaling of translational
and rotational DOFs and for inhomogeneities in stiff-
ness and mass. The dominant directions are obtained
by the solution of the generalized eigenvalue problem of
the Guyan-reduced system

ΨT
CBKΨCBΥCB−ir j = ωCB−ir jΨ

T
CBMΨCBΥCB−ir .

(15)
The vectors ΨCBΥCB 1 represent the reduced interface
modes. Since the interface modes with the lowest strain-
energy are more likely to be exposed, only NCB−ir modes
are retained. This leads to the reduction basis for the
Craig-Bampton method with interface reduction[
uI

uF

]
=

[
ΨCBΥCB 1 . . .ΨCBΥCBNCB−ir

ΦCB

]
︸ ︷︷ ︸

ΘCB−ir

[
ηCB ir

ξCB

]
.

(16)
This method is denoted CB-ir. For fluid-structure cou-
pling, the pressure always acts in the normal direction.
Therefore, it is sufficient to use so-called normal con-
straint modes instead of the standard constraint modes.
They are computed by applying a unit displacement
constraint in the nodal normal direction, instead of unit
displacement constraints in all global coordinate direc-
tions. This is realized by defining a local coordinate
transformation for all nodes, such that one coordinate
axis is parallel to the nodal normal vector. The in-plane
DOFs as well as the rotational DOFs are then consid-
ered as free DOFs. By this, the size of the system in
Eq. (15) is reduced to 1/6 of the original system if rota-
tional DOFs are present on the interface, otherwise to
1/3. This modified method is denoted CB-n-ir for later
use. Both methods CB-ir and CB-n-ir have in com-
mon, that the reduced subspace of ΨCB is selected as
dominant directions with respect to strain energy, thus
fulfilling some sort of optimality. To find this subspace
necessitates in a first step the computation of all con-
straint modes, leading to a high peak memory consump-
tion for storing all constraint modes. In a second step,
the memory consumption is then significantly reduced
by the interface reduction. However, critically high peak
values for the memory consumption might render the
interface reduction impossible. This motivated the def-
inition of an iterative interface reduction method in the
next subsection, which shows lower memory peak val-
ues.

[L,U] = lu

([
γsM + K

])
for i = [1 : NI]

fR = zeros(NI, 1); fR(i) = 1

solve(Ly = fR); solve(Up = y)

q =
[
INs

−ΨrbΨ
T
rbMs

]
p

r =
[
INs

−ΦRu 1:NRo
ΦT

Ru 1:NRo
M

]
q

i == 1
true false

ΥRu = 1
rTMr

r r⊥ = 1
rTMr

(
I−ΨR irΨ

T
R irM

)
r

rT
⊥
MrT

⊥
≤ εRu

true false

ΥRu =
[
ΥRu

1
rT

⊥
MrT

⊥

r⊥
]

∅

∅

ΘR it =
[
ΦRu Ψrb ΥRu

]

Figure 2: Structogramm of the method Ru-ir

IR for the Rubin Method When forming the inner
product of two attachment modes located on adjacent
nodes, a strong collinearity is observed. This collinearity
is exploited by the iterative interface reduction scheme
Ru-ir. A structogramm of it is depicted in Fig. 2. For
every attachment mode it is checked, if its inclusion in
the reduction basis significantly enlarges the range of the
present reduction basis. If so, its M-orthogonal part is
used to augment the reduction basis. If not, it is dis-
carded. It is worth noting, that the attachment mode is
orthogonalized to the rigid body modes Ψrb and to the
lowest NRo free-interface normal modes ΦRu. The com-
ponent mode basis of the method Ru-ir is then pop-
ulated by the free-interface normal modes, rigid body
modes and the matrix ΥRu. If instead of the standard
attachment modes, so-called normal attachment modes
are used, the method is denoted Ru-n-ir.

4 Numerical example

In this section, the proposed methods are applied to a
partly immersed example structure as depicted in Fig 3.
One half of an ellipsoid forms the hull. It is covered
by a curved cover plate. The ellipsoid has a length of
10.00 m, a width of 5.00 m and a total height of 3.75 m.
The hull has a shell thickness of 0.05 m, the cover of
0.01 m. Steel (E=207 GPa, ν=0.3, ρs=7669 kg/m3) is
used as material for the hull. Though not physically
correct, the cover is modeled by a higher E-modulus, in-
stead of modeling additionally stiffening elements. This
keeps the model as simple as possible. The FE-model
consists of 1484 shell elements width 1159 nodes, yield-
ing 6954 DOFs (both translational and rotational). The
commercial FE-package ANSYS is used to set up the
FE-system using SHELL181 elements. The dark col-
ored elements (308 elements) are in contact with wa-
ter (ρf=1000 kg/m3). Rayleigh damping is assumed with
the parameters α = 1.0 1/s and β=5.0×10−6 s. The sys-
tem is completely unconstrained. Since a conforming
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coupling scheme is applied, the BE-mesh is created di-
rectly from the FE-mesh. The system is excited by a
nodal force in y-direction at point A, located on one
symmetry axis on the cover as depicted in Fig. 3. The
system behavior is investigated in a frequency range be-
tween 10 and 100 Hz with a step size of 0.5 Hz. The
displacement in y-direction at point A is considered as
an additional interface DOF and the corresponding con-
straint or attachment modes are always added to the
reduction basis.

A

B
x

y

z

Figure 3: Partly immersed semi-ellipsoid test
structure. The dark-colored elements are in contact

with water. The structure is excited by a vertical force
vector at node A. Response is calculated at node B.

For a better physical understanding of the reduction
methods, Fig. 4 shows normal modes used for the Craig
Bampton method and the method CB-ir. It can well be
observed that all interface DOFs are fixed for the fixed-
interface normal modes (cf. Fig. 4(a)) and all but one in-
terface DOFs are fixed for the depicted constraint mode
(cf. Fig. 4(b)). This is not the case for the reduced inter-
face modes (Figs. 4(c) and 4(d)), which instead of the
fixed-interface normal modes are used for the method
CB-ir and CB-n-ir. Analogue to Fig. 4 the contour
plots in Fig. 5(a) shows one attachment mode as it used
used for the Rubin method. The white colored spots
in Fig. 5(b) mark the nodes, of which the m-orthogonal
part of the normal attachment modes is retained in the
reduction basis ΥRu for one of the models obtained by
the method Ru-n-ir. Since the structure processes an
evenly distributed density and a similar stiffness on the
interface the selected attachment are also geometrically
distributed evenly.

The upper plot of Fig. 6 shows the dynamic compliance
frequency response function (FRF) for the given input
at node A to the displacement in y-direction at node B,
HAB, for various models obtained by the interface re-
duction methods CB-ir and CB-n-ir. The full-order
solution (solid line) acts as a reference. To avoid confu-
sion, only a few frequencies are plotted for the reduced-
order models. The numbers in the legend proceeding
the reduction method denote the number of retained re-
duced interface modes, NΥ

CB−ir, for this model. For all
reduced-order models, 40 fixed-interface normal modes
are used. The lower plot in Fig. 6 shows the pressure
FRF from the nodal force at point A to the hydraulic
pressure at node B. It is found, that the reduced-order
model CB-ir-80 (black circles) and CB-ir-40 (cyan plus
signs) as well as the corresponding models CB-n-ir-80

(red circles) and CB-n-ir-40 (green plus signs) approx-

(a) Fixed-interface mode (b) Constraint mode

(c) Reduced interface mode (d) Reduced interface mode

Figure 4: Top: Fixed-interface normal modes and
constraint modes for the classical Craig-Bampton

method. Bottom: Reduced interface normal modes
used for the method CB-ir and CB-n-ir.

(a) (b)

Figure 5: Left: Attachment mode used for Rubin
method. Right: Spots mark the selected attachment

modes for method Ru-n-ir.

10

10

10

60

60

70

70

80

80

90

90

100

100

65

65

75

75

85

85

95

95
-10

-9

-8

H
A

B
[m

/N
]

full-sol.

full-sol.

CB-n-ir-80

CB-n-ir-80

CB-n-ir-40

CB-n-ir-40

CB-n-ir-20

CB-n-ir-20

CB-ir-80

CB-ir-80

CB-ir-40

CB-ir-40

CB-ir-20

CB-ir-20

0

0.1

0.2

0.3

0.4

0.5

frequency [Hz]

frequency [Hz]

p
re

ss
u
re

/
f
[1
/m

2
]

Figure 6: Dynamic compliance FRF and pressure FRF
for the interface reduction methods CB-ir and CB-n-ir
compared to full-order solution. All methods with 40
and more reduced interface modes approximate the

transfer function very well.
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imate both the dynamic compliance FRF and the pres-
sure FRF accurately. It is worth noting, that for the
classic Craig-Bampton method 1938 constraint modes
would be used, opposed to 40 reduced interface modes
for the models CB-ir-40 and CB-n-ir-40. Thus, a sig-
nificant reduction is obtained. If the number of retained
reduced interface modes is further reduced, a loss off
accuracy is observed. Both the model CB-ir-20 (red
points) and the model CB-n-ir-20 (black points) show
apparent differences for the dynamic compliance FRF
and the pressure FRF.

10

10

10
60 70 80 90 10065 75 85 95

-10

-9

-8

frequency [Hz]

H
A

B
[m

/N
]

full sol.
Ru-n-ir-130
Ru-n-ir-56
Ru-n-ir-37

Figure 7: Dynamic compliance FRF for the interface
reduction method Ru-n-ir compared to full-order

solution.

Figure 7 depicts the dynamic compliance FRFs for the
models obtained by the method Ru-n-ir. Again, the
numbers in the legend denote the number of basis vec-
tors in ΥRu. With decreasing size of the reduction
basis, the accuracy of the FRF also decreases. The
model Ru-n-ir-130 approximates the dynamic behav-
ior with a good accuracy. The models Ru-n-ir-56 and
Ru-n-ir-37 both show deviations for the low-frequency
range. A further reduction in model size would lead to
a less accurate representation of the FRF. This implies,
that the use of the free-interface normal modes alone,
as it is the case for model reduction by modal trunca-
tion, does not yield correct simulation results. Plots of
the method Ru-ir are not presented in this work, since
they show almost the same results and cause a higher
computational cost during the reduction process. Con-
cerning accuracy, for approximately the same size of the
reduced-order model the methods CB-ir and CB-n-ir

yield better results than the the method Ru-n-ir. This
may be explained by the optimal selection of the sub-
space with respect to the strain energy norm for the
Craig-Bampton based interface reduction methods.

Besides the accuracy, the computation times for the pro-
posed methods plays an important role. The computa-
tion times are divided in two fields: The time needed for
the coupled FE-BE solution and the time for the model
reduction. Both proposed interface reduction methods
show a significant acceleration of the FE-BE solution
step. For example, the FE-BE solution at 72.00 Hz takes
1.6 s for the full-order solution on a Intel Xeon 5160 Pro-
cessor and less than 0.1 s for all reduced order models.
This acceleration is partly eaten up by the additional
time needed for the model reduction. It takes between
e.g. 8.6 s for the model CB-n-ir-40, 15.1 s for the model
Ru-n-ir-56 and 250 s for the model CB-ir-80. The
overall speedup factor provides information about the

real gain in computation time. It is defined as the ratio
of the total simulation time of full-order model to the
one of the reduced-order model. Hereby, the total sim-
ulation time is the computation of the frequency sweep
including the time for the model reduction if applica-
ble. A speedup factor of 8.6 for the model Ru-n-ir-40
and of 7.8 for the model Ru-n-ir-56 is measured. It is
worth noting that both the classic Craig-Bampton and
the classic Rubin method show a “negative” speedup of
0.7 and 0.6, respectively.

5 Conclusion

In this paper, two interface reduction methods are inves-
tigated, extending the range of the Craig Bampton and
Rubin method to FE-BE coupled systems with a large
fluid-structure interface. They are applied to simulate
the low-frequency vibro-acoustic behavior of a partly im-
mersed system. It is shown that the solution process is
significantly accelerated while introducing only a small
additional reduction error.
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