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This work examines existing statistical time-frequency models and techniques for Room Transfer Function 
(RTF) analysis (i.e. Schroeder’s stochastic model and the standard deviation over frequency bands for the RTF 
magnitude). RTF fractional octave smoothing, as with 1/3 octave analysis, may lead to RTF simplifications that 
can be useful for audio applications, and this work examines the relationship of such operations with respect to 
the original RTF statistics. More specifically, the RTF statistics, derived after complex smoothing using 1/3 frac-
tional octave analysis, are compared to the original statistics across frequency and across space inside typical 
rooms, by varying the source, the receiver position and the corresponding ratio of the direct and reverberant sig-
nal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduc-
tion within rooms and when recorded in rooms. Histograms are used to compare RTF minima of typical “anech-
oic” and “reverberant” audio and speech signals, in order to model the alterations due to room acoustics.  

1 Introduction 

For many years now, statistical analysis has been a valuable 
tool in analyzing Room Transfer Functions (RTFs). 
Schroeder proposed a stochastic model [1] in the 1950s that 
was further developed by Polack [2, 3]. A good overview of 
the above models is given in [4]. Statistical models can lead 
to RTF simplifications that have been proved to be useful 
for several audio applications, such as room compensation, 
room modeling, auralisation and dereverberation techniques 
[4, 5]. The aim of this work is to examine statistical proper-
ties of measured RTFs across frequency and space inside 
typical rooms, when varying the distance between the posi-
tion of source and receiver and the corresponding ratio of 
the direct and reverberant energy. More specifically, the 
standard deviation (in dB) over 1/3 octave frequency bands 
for the RTF magnitude is calculated and presented as a 
function of frequency and space.  
The necessity of having a sufficient bandwidth in order to 
obtain values close to the expected value of 5.6 dB is 
shown (5.57 dB corresponding to the value of the standard 
deviation derived by Schroeder [1], when RTF normal 
modes overlap in frequency and there is negligible coherent 
transmission). When using higher fractional octave analysis 
(e.g. 1/16 or 1/64) the values for the standard deviation are 
shown to decrease. 
An alternative way to obtain simplified versions of RTFs, 
via complex smoothing [6, 7] using 1/3 octave analysis, is 
investigated. The standard deviation over fractional octave 
bands is examined also for complex smoothed versions of 
the above measured RTFs. 
This work also examines the statistical properties and dis-
tributions, using histograms to compare RTF minima of 
typical anechoic and reverberant audio-speech signals. His-
tograms are used to plot the RTF magnitude statistics for 
different distances between the source and the receiver in a 
room and the corresponding statistics of reverberant signals 
(when reproduced at the same points of the room).  Fur-
thermore the statistics of different types of anechoic signals 
(orchestral music, speech) are examined and compared to 
the corresponding reverberant signals.  

2 Theory  

2.1 Frequency domain statistical model 

For intervals in the room impulse response when the echo 
density becomes high and at frequencies having high modal 

overlap, the statistical models of RTF as developed by 
Schroeder [1] in the frequency domain and more recently 
by Polack [2]  in the time domain may be employed.  
This implies that at such higher frequencies, the normal 
modes of a room overlap, and any source signal will simul-
taneously excite several room modes. Assuming a sine 
wave excitation and a microphone located in the reverber-
ant field, the signal captured is the sum of contributions of 
large number of modes, where the real and the imaginary 
parts of the complex sound pressure can be considered as 
independent Gaussian processes that have the same vari-
ance [1]. This two-dimensional Gaussian density arises 
from the central limit theorem, assuming independence 
between the modes and implies that the magnitude fre-
quency response follows a Rayleigh distribution.  
These statistical properties are valid irrespective of the mi-
crophone position (provided that the direct sound is negli-
gible compared to the reflected one) and irrespective of the 
room dimensions and properties at frequencies above 
Schroeder’s frequency [1, 8],   

V
RTfSchroeder 2000≈

  
(Hz)                      (1)

 
where RT (sec) is the reverberation time and V (m3) is the 
volume of the room. 
Additionally, Schroeder [1] has shown that at distances far 
from the sound source the standard deviation of the sound 
pressure level with respect to frequency is 5.57 dB. Diestel 
[9] has shown that the probability distribution of sound 
pressure is related to the ratio of the direct to reverberant 
sound. J. J. Jetzt [10] derived a function that relates the 
standard deviation of the magnitude of the frequency re-
sponse to the ratio of the direct and reverberant energy, and 
he proposed the “standard deviation method” for measuring 
the critical distance.  

2.2 Time domain statistical model 

It is known that room impulse response tail may be simu-
lated by exponentially decaying white noise [4]. Based on 
this, Polack developed a time-domain model complement-
ing Schroeder’s frequency-domain model, where he de-
scribed the room impulse response tail as a realization of a 
non-stationary stochastic process: 

tetbth .)()( δ−= , 0≥t      (2) 
where b(t) is centered stationary Gaussian noise, and δ is: 

RT
10ln3

=δ
               

(3)
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As Schroeder’s model is valid above Schroeder’s frequency 
(equation (1)), Polack’s model is valid after a specific time 
interval from the initiation of the impulse response. This is 
so, because the time-domain response can only be Gaussian 
if a sufficient number of reflections overlap at any time 
instance. Since the reflection density increases, a value 

Vtmixing ≈ (ms) was proposed [2] as the transition time 
between early reflections and late reverberation. 
The previously described statistical models have introduced 
a useful framework for analysis and modeling of the room 
responses (RTFs) that is the main concern and will be ex-
amined by the present work.  

3 Analysis of room responses  

3.1 Standard deviation of the spectral 
response across frequency 

Let hp(k) be the discrete-time room impulse response at 
‘‘p’’ different positions (e.g. obtained by varying the source 
and receiver positions) and let Hp(k), be the corresponding 
N-point DFT. Hp(k) calculated in decibels (dB) gives: 

|))(log(|20)( kHkP pp =                      (4)              
In order to analyze the above data in sub-bands, the fre-
quency range can be divided into fractional-octave band-
widths. In practice, unequal bandwidths are traditionally 
employed in most audio-acoustic applications, conforming 
to octave fractions of 1/3, 1/6,…1/64. For a specific posi-
tion ‘‘p’’ and sub-band ‘‘sb’’, the standard deviation σp,sb of 
the magnitude of the spectrum Pp(k) for each sub-band that 
has a length of N frequency bins, can be calculated as: 
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where k is the frequency index, Pp,sb is the magnitude of the 
spectrum for a certain position ‘‘p’’ and a given sub-band 
‘‘sb’’ , and the mean value of Pp,sb is equal to: 
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3.2 Standard deviation of the spectral 
response across space 

The distance between the source and receiver for any im-
pulse response hp(k) measured at position ‘‘p’’ is normal-
ized according to the room critical distance [11], 
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where V (m3) is the volume of the room,  c is a mathemati-
cal constant equal to 0.161, and RT (sec) is the reverbera-
tion time of the room. Expressing as Pp,d_norm the RTF mag-
nitude at position p corresponding to a source – receiver 
distance dnorm , normalized according to equation (7), the 
standard deviation σp,d_cr can be evaluated (as in equation 
(5)). From this analysis, the relationship between RTF stan-
dard deviation and source-receiver distance will be derived. 

3.3 Complex smoothing 

Similar statistical quantities can be calculated for smoothed 
versions of the transfer functions. The RTF complex 
smoothing operation [6, 7] has been defined as: 
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where k is the discrete frequency index (0 ≤ k ≤ N-1) and 
Wsm(m,i) is a low-pass filter function where m is the sample 
index corresponding to the cut-off frequency fc (Hz), ac-
cording to the expression m=(N/fs)·fc.  
Different smoothing profiles (e.g. fractional-octave smooth-
ing, non-uniform frequency smoothing) can be used accord-
ing to the needs of the applications. Typical applications of 
complex smoothing include real-time room compensation 
and dereverberation.  

3.4 Ηistograms of reverberant signals 

In order to visualize some signal-dependent statistical prop-
erties of room reverberation, as they are imposed on rever-
berant signals, histograms can be used. Considering an an-
echoic music or speech signal san(n) relayed in a room that 
is described by an impulse response hp(n), the reverberant 
signal srev(n) can be described as: 

)()()( nhnsns panrev ∗=
            (9) 

The long-term magnitude spectra of the above signals 
(Srev(k), San(k)) normalized and expressed in dB reference 
to 0dB-FS (i.e. Full Scale), were analysed with the help of 
histograms presenting the frequency of occurrence of dif-
ferent spectral values.  

4 Experimental procedure  

The quantities described in section 3 were calculated for 
RTFs obtained from measurements and simulations. For the 
measurements the Dirac (B&K) software was employed, 
whereas for the simulations the ODEON (B&K) software 
was used. Measurements were taken in several rooms and 
their properties are presented in table 1. 
 

Index Room 
RT 

(sec) 
Volume 

(m3) 

Critical 
Distance 

(m) 

fSchr 

(Hz) 

T 1 Theatre 1 0.75 7472 5.63 20 

T 2 Theatre 2 1.00 1950 2.5 45 

R 1 Room 1 0.94 1189 2.0 56 

R 2 Room 2 1.1 190 0.7 152 

L 1 Listening Room 0.36 95 0.9 123 

S 1 Sports hall 6.4 34776 4.2 27 

Table 1. Properties of the rooms where measurements were 
carried out. 
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5 Results 

5.1 Fractional octave RTF analysis 

The standard deviation of the magnitude of the spectrum, 
using 1/3 octave band analysis, is calculated for several 
RTFs following the procedure described in section 3.1. The 
impulse responses have been measured at random positions 
in several rooms with properties that can be found in table 
1. The distance between the source and the receiver was 
always larger than the corresponding room critical distance  
and the results are presented in figure 1. A line indicating 
the 5.6 dB value derived by Schroeder [1] is also plotted.  

 
Figure 1. Standard deviation vs. frequency for RTFs (1/3 
octave analysis) for random positions in several rooms. 

It can be noted that the standard deviation for the frequency 
bands above approx. 800 Hz gives values close to Schroe-
der’s predicted value of 5.6 dB with maximum deviation of 
±1.5 dB. It is interesting to note that this trend appears irre-
spective of the position and the room’s acoustical proper-
ties. However, for the frequency bands with frequencies 
lower than 800 Hz, the standard deviation seems to vary 
considerably with respect to the predicted value. The lower 
measured values are somehow expected for such low fre-
quency bands, using 1/3 octave band analysis, since such 
narrow bandwidths lead to underestimation for the standard 
deviation, because the spectral values within a narrow band 
appear to be highly correlated. Additionally, below Schroe-
der’s frequency an ambiguity in the results was also ex-
pected, for the reasons described in section 2.1. 
Using the same approach, the standard deviation can be 
calculated and plotted, when employing 1/16 and 1/64 frac-
tional octave analysis and the results are shown in figure 2. 
As expected, the higher the resolution used, i.e. the nar-
rower the bands where the standard deviation is calculated, 
the lower is the measured standard deviation. This is evi-
dent from figure 2, where the values of the standard devia-
tion are plotted as a function of frequency for a specific 
position in room R 2 (see table 1) using different fractional 
octave band analysis. 
In figure 3 the standard deviation across space is calculated 
and plotted, following the procedure described in section 
3.2, using 1/3, 1/16 and 1/64 analysis. The results corre-
spond to the frequency range between 300 - 10000 Hz and 
as can be seen, at distances very close to the source the 
standard deviation is very low. As the distance between 
source and receiver increases, the standard deviation also 

increases, and converges to a specific value (depending on 
the analysis being used) for distances higher than that of the 
critical distance. 

 
Figure 2. Standard deviation vs. frequency for RTF (1/3, 
1/16 and 1/64 octave analysis) for a specific position in 
room R 2. 

The results that appear in figure 3 are in accordance with 
the results obtained by Jetzt [10].  Furthermore, beyond the 
room critical distance, RTF standard deviation statistics 
across frequency and across space appear to converge to 
identical values depending mainly on the analysis band-
width. 

 
Figure 3. Standard deviation vs. normalized distance for 
RTFs (1/3, 1/16 and 1/64 octave analysis) taken at several 
positions in room R 2. 

5.2 Complex smoothed fractional octave 
RTF  responses 

The same analysis as presented in section 5.1 can be ob-
tained for complex smoothed RTFs.  
In figure 4 the standard deviation, as a function of fre-
quency for complex smoothed RTFs, obtained at random 
positions in several rooms (see table 1) is plotted. It can be 
seen that in this case the values of the standard deviation 
are much lower. For frequencies between 500 Hz and   
7000 Hz the standard deviation appears to be lower than     
2 dB, while in frequencies above 8000 Hz the values are 
higher for some of the rooms under examination. This was 
expected as complex smoothing employs averaging on the 
magnitude, while conforming to perceptual rules.  
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In figure 5 can be seen, the dependence on the analysis be-
ing used for the complex smoothed RTF standard deviation 
at a specific position in room R 1. Again, the higher the 
resolution, the lower the standard deviation.  
Finally, in figure 6 the standard deviation, as a function of 
the normalised distance is presented. Although the behavior 
of the curves is similar to that appearing in figure 3, the 
values are now much lower, due to complex smoothing. 
The effect of choosing different fractional bandwidth is 
again evident. 

 
Figure 4. Standard deviation vs. frequency for complex 
smoothed RTFs (1/3 octave analysis) taken at random posi-
tions in several rooms.  

 
Figure 5. Standard deviation vs. frequency for complex 
smoothed RTF (1/3, 1/16 and 1/64 octave analysis) taken at 
a specific position in room R 1. 

 
Figure 6. Standard deviation vs. normalized distance for 
complex smoothed RTFs (1/3 octave analysis) taken at sev-
eral positions in  room R 1. 

5.3 Reverberant signal statistics 

In figure 7, histograms are plotted presenting the statistical 
characteristics of the magnitude of the spectrum of two 
RTFs, measured at two different positions in room T 1. It 
can be noted that the statistics of the two RTFs follow a 
similar pattern, as both of them present two peaks at ap-
proximately -50 dB and -25 dB. Additionally, the histo-
grams of the spectra of an anechoic signal and of two re-
verberant signals (calculated according to equation (9)) are 
also plotted. From these results, it appears that RTF histo-
gram trends are superimposed on the anechoic signal histo-
gram, leading to both a spread towards smaller values 
(more spectral dips) and towards the characteristic domi-
nance of the two RTF peaks. 
In figure 8 histograms showing the magnitude spectrum 
statistics of two other types of anechoic signals (speech and 
orchestral) are plotted, noting that originally the shape of 
their respective histograms differs significantly.  

 
Figure 7. Histograms of the spectrum magnitude of the 
RTFs at two different positions in room T 1 (left column) 
and reverberant signal statistics (piano) when the signal is 
reproduced at the same positions. On the top right plot ap-
pear the statistics of the anechoic piano signal. 
 
These spectra of the anechoic signals are then convolved 
with the room response obtained at a specific position in 
room T 1 and the statistics of the RTF of the resulting re-
verberant signals are also plotted on the right side of figure 
8. It can be observed that the resulting reverberant signal 
histograms, are dominated by the characteristic 2-peak pat-
tern due to the RTF histogram, indicating that they were 
reproduced in the same room.  
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Figure 8. Histograms of the spectrum magnitude of differ-
ent types of anechoic signals and of the reverberant signals, 
when they are reproduced at a specific position in room T1.  

6 Conclusions 

Statistical properties of RTFs have been investigated and 
the standard deviation as a function of frequency is shown 
to equal approximately 5.6 dB when using 1/3 fractional 
octave band analysis for frequencies higher than approx. 
800 Hz. For lower frequencies an ambiguity of the standard 
deviation value exists. Furthermore, the necessity of having 
a sufficiently broad bandwidth in order to obtain values 
close to the expected value of 5.6 dB is shown.  Moreover 
the relationship between RTF standard deviation and 
source-receiver distance has been also presented and it is 
shown that beyond room critical distance, RTF deviation 
approaches the result obtained for the deviation across fre-
quency. The dependence of the values for the standard de-
viation on the fraction of the analysis that is used, has been 
also discussed. 
Furthermore, the standard deviation has been also examined 
for complex smoothed responses, as this might be a useful 
approach to obtain simplified versions of RTFs that con-
form to perceptual rules. The obtained values for the stan-
dard deviation are shown to be much lower, biased further 
towards even lower values in the perceptually significant 
mid-frequency range and the effect of choosing different 
fractional bandwidth was again evident. 
The RTF magnitude spectrum statistical properties and sig-
nals has been also visualized with the help of histograms. 
Similarities have been observed between the RTF magni-
tude histograms within the same room and of any reverber-
ant signal when it is reproduced in the same room. More-
over, similarities on the magnitude statistics of different 
types of reverberant signals when reproduced at a specific 
position in a room have been noted, although the original 
anechoic signals presented significant differences. This 
approach might provide a useful framework for derever-
beration techniques as it can offer information about the 
frequency of occurrence of the spectral values of reverber-
ant signals which can be related to the acoustical properties 
and dimensions of the rooms.   
The above observations  may form a basis of RTF modeling 
based on statistical considerations. In future work, the 
properties of the phase and group delay of RTFs, will be 
investigated using a similar approach. 
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