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Simulation of vibro-acoustic behavior of submerged bodies necessitates dealing with fluid-structure
coupled problems. Due to the high density of the fluid, the feedback of the acoustic pressure onto the
structure cannot be neglected and a fully coupled system must be investigated. The boundary element
method (BEM) is well suited for simulating the sound propagation in an unbounded exterior acoustic
fluid domain. Here, the fast multipole method (FMM) is applied to overcome the known bottleneck of
classical BE-methods. In the case of partly immersed bodies, Dirichlet boundary conditions on the fluid
surface have to be incorporated additionally. This is done by applying a half-space formulation. The
extension of the FMM to this scenario is discussed. The finite element method (FEM) is used for the
structural part. The commercial finite element package ANSYS is applied for setting up the mass and
stiffness matrices. A preconditioned iterative solver is employed and the numerical efficiency is discussed.
The applicability of the coupling scheme is demonstrated using a realistic model problem.

1 Introduction

For the simulation of the vibrations of ship-like struc-
tures, the surrounding water has to be taken into con-
sideration. In case of surface ships, the fluid domain Ωa

forms a semi-infinite half-space (cf. Fig. 1). Problems
with infinite domains can efficiently be treated with the
BEM, since only the boundary of an investigated struc-
ture within this domain has to be discretized. The
free field condition, also known as Sommerfeld condi-
tion, is automatically fulfilled by the fundamental solu-
tion. This procedure can also be applied to half-space
problems. Here, a modified fundamental solution is cho-
sen, which satisfies the boundary condition on the half-
space plane [1]. For a free water surface, a Dirichlet
boundary condition with vanishing pressure has to be
applied. Unfortunately, the naive use of the BEM re-
sults in fully populated matrices with an expense of or-
der O(N2) for a problem with N degrees of freedom. If
a direct solver is applied, one even has an expense of
order O(N3). To overcome this drawback, the FMM is
applied in this paper, which has an almost linear expense
of order O(N log2 N). The treatment of half-space prob-
lems involves some modifications of the usually applied
multipole cycle. Nevertheless, the modified fundamen-
tal solution is incorporated in a very efficient way. To
take full advantage of the FMM, which is capable to
provide a matrix-vector product, one favorably applies
an iterative solver.

For the structural part Ωs, the FEM is the favorite
choice. The discretization results in sparse matrices.
Typically, ship-like structures are modeled with shell el-
ements. The resulting matrices have a very poor con-
dition number, which makes the use of direct solvers
preferable to the use of iterative solvers.

The two domains are coupled on the fluid-structure
interface ΓI [5]. An efficient way to solve the coupled
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Figure 1: The investigated half-space problem consists
of a structural domain Ωs and an exterior acoustic

domain Ωa which are coupled on ΓI.

system is the use of a Schur complement formulation [6].
Thus, an iterative solver is applied for the outer loop
with the BE matrices and the inverse of the BE matrix
within the Schur complement is computed by a direct
solver.

The paper is organized as follows: First, the BE rep-
resentation of the half-space problem is discussed. Then,
the efficient implementation by the multilevel FMM is
presented. After this, the application of the FEM to the
structural part is outlined and the coupled system is set
up. At the end, a realistic container-vessel is investi-
gated with the proposed approach.

2 Fast BEM for the Fluid Domain

As governing equation for the acoustic pressure p of the
fluid domain, the linear time-harmonic Helmholtz equa-
tion

∆p(x) + κ2 p(x) = 0 , x ∈ Ωa (1)

is chosen, where ∆ denotes the Laplacian. The circular
wavenumber is given by κ = ω/c, with the angular fre-
quency ω and the speed of sound c. Throughout this
paper, the time harmonic behavior e−iωt is applied. In
the following, a boundary integral representation for the
half-space problem is discussed.

2.1 Boundary Integral Equations

Starting point is the weak form of the Helmholtz equa-
tion, which is obtained by weighting with a fundamental
solution P (x, y). For the investigated half-space prob-
lem, the modified fundamental solution [1]

P (x, y) =
1

4π

ei κ |x−y|

|x − y|
−

1

4π

ei κ |x̃−y|

|x̃ − y|
, (2)

is applied, where the point x is mirrored on the half-
space plane to yield x̃. Applying Green’s second theo-
rem yields the representation formula

p(x) = −

∫

ΓI

P (x, y)
∂p(y)

∂ny

dsy +

∫

ΓI

∂P (x, y)

∂ny

p(y) dsy ,

(3)
which is valid for an arbitrary point x within Ωa. Obvi-
ously, the infinite half-space plane does not have to be
discretized at all. This is because of the special choice
of the fundamental solution. Moving the point x onto
the smooth boundary by a limit process yields the two
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boundary integral equations

1

2
p(x) =

∫

ΓI

P (x, y)
∂p(y)

∂ny

dsy

︸ ︷︷ ︸

(V q)(x)

−

∫

ΓI

∂P (x, y)

∂ny

p(y) dsy

︸ ︷︷ ︸

(Kp)(x)

,

(4)
1

2
q(x) =

∫

ΓI

∂P (x, y)

∂nx

∂p(y)

∂ny

dsy

︸ ︷︷ ︸

(K′q)(x)

−

∫

ΓI

∂2P (x, y)

∂nx∂ny

p(y) dsy

︸ ︷︷ ︸

−(Dp)(x)

,

(5)
with the single layer potential V , the double layer poten-
tial K, its adjoint K ′ and the hypersingular operator D.
Here, the acoustic flux q(x) = ∂p(x)/∂nx is introduced.
The two integral equations (4) and (5) are weighted with
linear functions to obtain a Galerkin formulation. Now,
the boundary ΓI is discretized with triangular elements.
Piecewise linear basis functions ϕi(x) are applied for the
interpolation of p and discontinuous ones for the acous-
tic flux q. To overcome the well-known non-uniqueness
problems, the Burton-Miller approach is applied, which
is a linear combination of both integral equations. The
resulting system of equations reads
(

1

2
M + K +

i

κ
D

)

︸ ︷︷ ︸

KBE

p −

(

V +
i

2κ
M ′ −

i

κ
K ′

)

︸ ︷︷ ︸

CBE

q = 0 ,

(6)
where M , K, D and V represent the Galerkin matri-
ces corresponding to the operators in (4) and (5). For
coupling with the FEM, the acoustic flux on an BE ele-
ment m needs to be expressed by the structural displace-
ments of the adjacent nodes k. Using Euler’s equation,
this is done by

qm =
1

3
̺fω

2
∑

k∈m

uk
nm , (7)

with the fluid density ̺f and the nodal displacement uk
nm

at node k in normal direction of the element m. This is
a simple averaging which turned out to be suitable for
engineering applications [6]. In matrix notation, (7) is
written as

q = T qu , (8)

where u is a vector with the displacements and rota-
tions of the strucural nodes. Matrix T q is sparse and
filled with zeros for degrees of freedom which are not in
contact with the fluid.

To avoid setting up the fully populated matrices KBE

and CBE, the FMM is applied in the following.

2.2 Cluster Tree of the Half-Space FMM

The second term in the fundamental solution (2) ac-
counts for the point x̃, which is obtained by mirroring x
on the half-space plane. Thus, an efficient strategy for
the FMM is to simply mirror the whole geometry with
its elements and nodes. This way, the standard kernels
and the multipole series expansion is still applicable.
The first step is the introduction of a hierarchical clus-
ter tree, which is built by bisectioning (cf. Fig. 2). The
root cluster contains all elements. Every father cluster
on level ℓ is split into two son clusters on level ℓ+1. Clus-
ters which do not have any sons are called leaf-clusters.

sources targets

mirrored
targets

original

mirrored

D

Cℓ
γ

Cℓ
δ

dk
y dm

xYk

Xm

X̃m

Figure 2: Clustering of the sources and the targets.

A cluster cℓ
γ on level ℓ is said to be in the near-field of

cℓ
δ if the condition

dist(Cℓ
γ ,Cℓ

δ) ≤ cd max(dℓ
γ , dℓ

δ) (9)

is satisfied, where dℓ
γ is the cluster diameter of cℓ

γ . Please
note, that clusters in the mirrored part are always target-
clusters but never source-clusters. Since most of the the
mirrored clusters are far away from the half-space plane,
most of the interaction is in the far-field part, giving a
good far-field compression. Clusters whose father clus-
ters are in each others near-field but themselves are not
in the near-field of each other, form the so-called inter-
action list.

2.3 Near-Field of the FMM

The multipole expansion is only valid for the far-field,
where the points are well-separated. The near-field has
to be integrated in the classical way. Due to the mirror
technique, the already existing integration routines are
applied. Only some additional calls are necessary for el-
ements in mirrored target clusters, which are close to the
half-space plane and fulfill the near-field condition (9) .
The result of the integration has to be subtracted from
the entries at the corresponding non-mirrored node lo-
cations of the sparse near-field matrix. Thus the overall
size and memory consumption is not influenced by the
mirror technique.

2.4 Far-Field of the FMM

For the introduced operators, one has to evaluate po-
tentials of the type

Φ(xm) =

A∑

k=1

e iκ|xm−yk|

|xm − yk|
qk, (10)

where qk denotes the source strengths of A sources and
|xm−yk| is the distance between the field and load point.
Introducing the translation operator

ML(s,D) =

L∑

l=0

(2l + 1)ilh
(1)
l (κ|D|)Pl(s · D̂) , (11)

with the Hankel functions hl and the Legendre poly-
noms Pl, the original potential (10) can be expressed in
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the form

Φ(xm) =
iκ

4π

∫

S2

eiκ dm
x ·sML(s,D)

A∑

k=1

eiκ dk
y ·sqk

︸ ︷︷ ︸

F (s)

ds ,

(12)
where dm

x , D and dk
y are visualized in Fig. 2. The choice

of L in (11), which is called the expansion length, has
a significant influence on the accuracy and the perfor-
mance of the multipole algorithm. Proper choice helps
to achieve a desired accuracy and avoids possible diver-
gence of the series. Typically, the semi-empirical rule [3]

L (κ dℓ) = κdℓ + ce log (κ dℓ + π) (13)

is used to estimate the number of series terms on level ℓ
of the cluster tree. The parameter ce has to be chosen
by the user and determines the accuracy.

The sum on the right hand side of (12) is called the
far-field signature F (s). It is local to the cluster with
the sources qk, since only the vector dk

y appears. In con-
trast to this, the translation operator ML only depends
on the vector D between two clusters’ centers. Thus,
if a regular cluster grid is used, the translation opera-
tors can be re–used. Translating the far-field signature
to the clusters of its interaction list using a translation
operator forms the so called near-field signature N(s).
The solution is finally recovered by an exponential func-
tion of dm

x and an integration over the unit sphere. The
resulting FMM has a quasi linear complexity of order
O(N log2 N).

The evaluation of the matrix-vector product with the
FMM algorithm is similar for all operators which are
needed for the coupling formulations. Only slight modi-
fications are necessary in order to take into account the
different test and shape functions. The general proce-
dure can be summarized with the following steps:

1. Compute the near-field part by a sparse matrix–
vector multiplication.

2. Evaluate the far-field signature F (s) for all leaf
clusters in the non-mirrored part.

3. Translate the far-field signature to all interaction
cluster by means of the translation operators (11)
and sum it up as the near-field signature N(s)
there. Mirrored clusters have to be considered in
the interaction lists.

4. Shift the far-field signature to the father cluster
and repeat step 3 until the interaction list is empty.

5. Go the opposite direction and shift the near-field
signature N(s) for the non-mirrored and mirrored
clusters to the son clusters until the leaf clusters
are reached.

6. Recover the solution by integration over the unit
sphere and the elements. The result at a node of
the mirrored part has to be subtracted from the
corresponding non-mirrored entry.

There are two main advantages if the mirror tech-
nique is applied with the FMM. First, the additional

expense for the near-field is small, since only a few mir-
rored clusters are in the near-field of a non-mirrored
source cluster. Second, the standard multipole expan-
sion can be applied. Most of the interaction to the mir-
rored part is on the coarser levels, which gives a good
efficiency of the FMM.

3 FEM for the Structural Domain

The finite element package ANSYS is utilized to set up a
linear system of equations for the structural domain Ωs

which is modeled with the elasto-dynamic field equation

ω2̺s u(x) + µ∆u(x) + (λ + µ) grad div u(x) = 0 . (14)

The tractions ts are prescribed on Γs. The resulting
mass matrix M s, the stiffness matrix Ks and the right
hand side vector f s are imported into the research code
by a binary interface. Vector f s incorporates the trac-
tions ts due to the driving forces. The data exchange
has to be done only once for a given model, as M s

and Ks are frequency independent. In this paper, hys-
teretic damping is considered with the damping matrix

Ds = η Ks , (15)

and the damping parameter η. Typically, shell elements
with translational and rotational degrees of freedom are
applied for thin structures. Thus, each node generally
has six degrees of freedom, which are {ux,uy,uz,θx,θy,θz}.
In the frequency domain, the resulting FE system reads

(
−ω2M s − iωDs + Ks

)

︸ ︷︷ ︸

KFE

u = f s − CFE p , (16)

where a coupling matrix CFE is introduced. It converts
the nodal pressure values to the force components of the
structure. It is assembled from the element matrices

Ck
FE =

∫

τk

NT
u Np nx dsx , (17)

where Nu and Np contain the shape functions. Here,
a lumped force loading is applied, which neglects mo-
ments. Please note, that not all structural nodes are in
contact with the water. Thus, CFE has zero entries for
the corresponding degrees of freedom.

4 Coupled Problem

Coupling the BE equations (6) and (8) with the FE
equation (16) yields the linear block system of equations

(
KFE CFE

CBE T q KBE

)

︸ ︷︷ ︸

K

(
u

p

)

︸ ︷︷ ︸

x

=

(
f s

0

)

︸ ︷︷ ︸

b

. (18)

As outlined in [6], elimination of u yields a Schur com-
plement representation of the coupled system

(
KBE − CBET q K−1

FECFE

)

︸ ︷︷ ︸

S

p = −CBET q K−1
FEf s ,

(19)
where S denotes the Schur complement.
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A

Figure 3: Discretized model of the container-vessel
“Zim” (top). The wet boundary elements are

highlighted in dark gray. Light spots indicate the
position of the used monopole sources (bottom).

4.1 Iterative Solution Strategy

As discussed above, the FMM helps to efficiently com-
pute the BE matrix–vector products. It is especially
well suited in combination with an iterative solver. In
the following, a preconditioned GMRES is applied to
solve the Schur complement system (19). In every itera-
tion step, the effect of the inverse of the FE matrix on a
vector has to be computed. Since the condition number
of the FE matrix is high, a direct factorization based
LU solver is applied for this purpose. This has the ad-
vantage, that the factorization has to be computed only
once and can then be reused during the solution process.

The GMRES solver is preconditioned with an ILU or
scaling preconditioner, working on the near-field matrix
of KBE. Thus, this preconditioner neglects the feedback
of the acoustic pressure onto the structure.

5 Numerical Example

As model problem, the container vessel “Zim” which is
depicted in Fig. 3 is investigated. It has a length of
253 m, a width of 32.2 m and a draft of 10.8 m. The dis-
cretized model consists of approximately 36,000 struc-
tural degrees of freedom and approximately 1,500 wet
nodes with pressure degrees of freedom. The nodes of
the boundary elements coincide with the nodes of the
finite elements. The structure is driven by 110 semi-
artificial forces, which reflects the excitation of the struc-
ture by the screw.

5.1 Simulation Error of the BE Part

First, the pure acoustic problem is investigated. An
artificial acoustic field is generated by using monopole
sources as depicted in Fig.3 (bottom). To satisfy the
pressure-free boundary condition on the water surface,
all sources are mirrored on the half-space plane and the
strengths of the mirrored sources are multiplied by -1.
The corresponding flux field is used as Neumann bound-
ary condition on ΓI. Now the BEM is used to compute
the pressure at all nodes. The pressure is then compared
with the corresponding pressure of the analytical field.
Therefor, the Dirichlet error

eD =
‖pBEM − panalyt.‖2

‖panalyt.‖2
(20)
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Figure 4: Dirichlet errors for monopole problem.

is analyzed. The errors are visualized in Fig. 4 for FMM
with different expansion lengths. For the FMM, the
near-field parameter in (9) is chosen as cd = 3. The ex-
pansion lengths of the multipole method are computed
by (13) with ce = 5. The use of the semi-empirical
rule (13) leads to error jumps in the low frequency regime.
This is because the rule is optimized for a ratio of 6 to 10
elements per wavelength. Here, the ratio is 28 at a fre-
quency of 20 Hz. The jumps are avoided by computing
the expansion length using (13), but fixing the frequency
to 18 Hz for all frequencies below 18 Hz. This leads to
a slightly increased expansion length for small frequen-
cies. Obviously, the additional errors by the FMM is
negligible compared to the discretization error.

5.2 Results of the Coupled Approach

Now the fully coupled system (19) is investigated. For
the FMM, the same parameters as discussed in the last
section are applied. Figure 5 shows the acoustic pressure
at node A (cf. Fig3). As comparison, also the solution of
the one-way coupled problem is plotted. One-way cou-
pling means, that CFE in (19) is set to zero. Thus, the
feedback of the acoustic pressure is neglected and the
structural and acoustical problems are solved consecu-
tively. As can clearly be seen, the results of the strong
coupling scheme differ significantly from the one of the
one-way coupling. Obviously, the feedback of the pres-
sure cannot be neglected and a fully coupled simulation
is unavoidable.
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Figure 5: Pressure at node A of the vessel.
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Figure 6: GMRES iteration steps, full coupling versus
one way coupling for different preconditioners.

5.3 Efficiency

The number of iteration steps of the GMRES has a di-
rect influence on the simulation time. To improve con-
vergence, an ILU or scaling preconditioner is applied to
the near-field matrix of KBE. Figure 6 shows the num-
ber of iteration steps for an accuracy of 1e-6. In case
of the one-way coupling, convergence is almost indepen-
dent of the frequency and optimal for a ILU precondi-
tioner. Even a simple scaling works well. For the strong
coupling, the number of iteration steps increases. This
is as one would expect, since the one-way coupled sys-
tem is used for preconditioning. Here, the ILU works
hardly better than the scaling preconditioner. In this
case, the convergence could be further improved by in-
corporating the second part of the Schur complement
into the preconditioning.

A significant portion of the computation time is
needed for setting up the near-field matrices of the FMM.
For the presented model, 24.7% of the computation time
is spent for the mirrored part. This is a rather small
model for the FMM. The far-field compression works
better for larger models. To demonstrate this, the bound-
ary elements are simply split into smaller elements with
half of the sidelength, leading to 5,891 wet nodes. Now,
only 10.8% are spent for the mirrored part. Another
refinement leads to 23,213 nodes and a portion of 6.4%.
The efficiency is better for larger models, since the num-
ber of elements in the near-field clusters within the mir-
rored part is smaller compared to the overall number of
elements.

Besides the near-field integration, also the expense
of a single iteration step is of importance. Here, mainly
the far-field of the FMM has a significant contribution.
The mirrored part leads to an increase of applied trans-
lation operators of 119% for the original model and of
47% and 18% for the refined ones, respectively. But this
behavior cannot be seen for the total computation time
of the far-field, which increases by approximately 30%
for all models. The upward pass is only slightly more
expensive, because of the additionally applied transla-
tions. Most of the time is spent with the computation of
the near-field signature, which remains unchanged. The
downward pass, which is generally cheaper than the up-
ward one, is doubled, since all operations have to be
done for the original and the mirrored part.

6 Conclusion

In this paper, a strong coupling scheme between the
fast multipole BEM and the FEM is presented for the
simulation of fluid-structure coupled problems. For the
investigation of ship-like structures, the free water sur-
face has to be incorporated into the BEM formulation
of the fluid part. An efficient approach is the use of
a special half-space fundamental solution. This avoids
the discretization of the free water surface. To overcome
the drawback of fully populated matrices in case of stan-
dard BEM implementations, the fast multipole method
is applied. The realization of the half-space fundamen-
tal solution involves some modifications of the standard
multipole procedure. A simple and efficient implementa-
tion is obtained by a mirror technique, which duplicates
the original model. Numerical tests show, that the ad-
ditional cost for the modified fundamental solution is
smaller than 30% for large models.
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