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Nowadays sound radiation from spherical shells is attracted for aviation industry. In this paper, the general 
approach is presented for predicting a coupled fluid solid interaction problem. Therefore, a fully elasticity 
solution is applied in conjunction with laminated shell model for considering of the sound field over the shell. 
For each plies the elasticity coefficients are assumed to be constant. The main objectives of this work are 
investigating the influence of internal acoustic mediums and also radially inhomogeneity on acoustic 
performance of the multilayered spherical shell. Numerical results are presented for a three layered spherical 
shell. For each excitation frequency, sound pressure over zenith angle in polar coordinate is plotted. Also 
radiated sound pressure levels against excitation frequency for the scope of resonance spectroscopy are 
investigated. 
 

1 Introduction 

In the recent years, Interaction of an incident sound field 
with spherical shells is a problem of long-standing interest 
in underwater acoustic [1, 2]. Experiments as well as 
theoretical studies are continued and reported in the 
literature [3, 4, and 5]. Against the acoustic scattering, 
radiation of the sound by elastic structures caused by 
mechanical excitation had less considered. In this way, Wu 
et al. [6] predicted the sound radiation of coated cylindrical 
shell and also Chen [7] could formulate submerged elastic 
structures using in-vacuo vibrational mode expansions with 
which the acoustic impedance loading is derived based on 
radiation mode theory. Vibration and acoustic radiation of 
reinforced spherical shell was studied by C. Junming [8]. 
Pathak et al. was addressed the problem of harmonically 
excited spherical shells surrounded by a fluid medium by 
the use of the finite Legendre transform [9]. 
Above review indicates that, in contrast with the mono 
layer spherical shells, there seem to be no rigorous 
investigations on acoustic radiation induced forced 
vibration of a multi layered spherical shell. The primary 
purpose of the current work is to fill this gap. Hence, the 
Legendre Transform is used to expand the field variables 
for achieving an exact analysis for radiation of acoustic 
waves by a isotropic multilayered spherical shell 
submerged in and filled with compressible ideal fluid 
mediums. 

2 Theory 

The problem geometry is depicted in Fig. 1, where (x,y,z) is 
the Cartesian coordinate system with origin at O and (r,θ) is 
the corresponding spherical polar coordinate system.  

 

Fig. 1 Problem geometry 

 
A multilayered spherical shell which immersed in an 
infinite static ideal fluid space and filled with another ideal 
fluid is excited harmonically by a point load. Both shell 
layers and fluids are assumed to be homogeneous and 
isotropic. Taking advantage of problem axisymmetry (i.e., 
ignoring all Φ-dependencies) the irrotational and rotational 
elastic displacement potentials for ith layer of the shell are 
denoted by Φi(r,θ) and χi(r,θ) respectively and the 
irrotational displacement potential for the fluids is denoted 
by Φf(r,θ). The Lame constants for the ith layer of the shell 
materials are denoted by λi and μi and that for the fluids by 
λf. Harmonic distributed force per unit area p(r,θ)exp(+jωt) 
is assumed to be acting normally on the inner surface of the 
shell. In the following development the factor exp(jωt) will 
be suppressed. 
The potentials for the coupled shell-fluid system Φ(r,θ), 
χ(r,θ) and Φf(r,θ) must satisfy the following reduced wave 
equations in the spherical polar coordinate system, 
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, where δ is Dirac Delta function. By expanding of eq. 4 in 
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, which Pn(cosθ) is Legendre function with argument cosθ. 
Solutions of Eq. 1 to 3 in spherical coordinate are 
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where i
nA , i

nB , i
nC , i

nD  and i
nE  are constants, nj  and 

ny  are nth-order spherical Bessel functions of the first and 

second kind, respectively and nh  the nth-order spherical 
Hankel functions of the second kind. By applying boundary 
conditions for each interface, the unknown constants will 
determine. Continuity normal/shear stresses, displacements 
for interfaces of the each layer is formed set of required 
boundary conditions. Quantities related to left side of each 
layer is superscripted with (-) and ones related to right side 
of each layer is superscripted with (+). 
Normal stress continuity for the ith layer 
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Shear stress continuity for the ith layer 
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Displacement continuity between i-1th and ith layer 
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Full derivation for a three layered sandwich spherical shell 
submerged and filled with ideal fluids is derived 
(Appendix). 

3 Numerical results 

Numerical results are now presented for the case of a 
sandwich (Steel-Copper-Steel) spherical shell surrounded 
by water. The shell is considered that filled with three types 
of fluid (Air, Freon and Glycerin). Each layer has the same 
thickness. Ratio of shell thickness over shell radius is 0.01. 
Also outer radius of the shell is 1 meter. The numerical 
values of the material constants are listed in table 1.  

 λ (GPa) µ (GPa) 

Steel 103.16 77.82 
Copper 92.77 43.66 

 ρ (kgm-3) Speed of sound (ms-1) 

Air 1 340 
Water 1025 1460 
Freon 1880 655 

Glycerin 1250 1910 

Table 1 Fluids and structure parameters used in the 
calculations 

All quantities are presented as a function of nondimensional 
frequency (k1as) which is equal to multiply of acoustic 
wave number in surrounding on outer radius of the shell. 

Pressure on the shell and far field pressure directionality 
patterns are plotted (Fig. 2) for different internal fluids. 
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Fig. 2 Near field (@ r = as, 0 < θ < π) and 
Scaling Far field (@ r = 10 as, π  < θ < 2π) pressure radiated by 

the sandwich (Steel-Copper-Steel) spherical shell 
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Fig. 3 Sound pressure level on the shell, (A) @ θ = 0,  

(B) @ θ = π/2 versus frequency 
Also sound pressure level against excitation frequency for 
two points on the shell is plotted (Fig. 2). Finally, in order 
to check overall validity of the work, we computed pressure 
pattern on the evacuated single layer steel spherical shell 
surrounded in water. Numerical result, as shown in Fig. 3 
show excellent agreement with Fig. 7 of [9]. 
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Fig. 4 Pressure on the point excited evacuated single layer 
spherical shell for ka=10  

 
 

4 Discussion and conclusion  

At the first, consider near field pressure patterns. For the 
excitation in low frequency, the dominant contribution to 
the response comes from the rigid body motion mode. 
Hence the pressures on the shell vary as cosθ except in the 
vicinity of the force. But in high frequency, higher shape 
functions are advent in the response. Indeed in higher mode 
shape, numbers of nodes are increased. Therefore pressure 
patterns in high frequency convert as a multi pick 
structures. Far field region in low frequency is behaved 
dipole like radiated pressure which (Like near field) 
indicates the domination of rigid body mode in shell 
response. 
Another aspect that can be founded in fig. 2 is the role of 
internal fluid density on the radiation of the shell on outer 
acoustic field. High dense fluid increases the damping in 
the system. Therefore the shell with light interior fluids 
radiates high value of sound pressure as a heavy interior 
fluid. So near and far field sound radiated in the case air is 
higher than glycerin and also Freon.    
Resonance behavior of the system in two cases is shown in 
fig. 3. In the case of direct point measurement (the load and 
response point are in one direction), between each two 
resonance points, the antiresonance point is existed. But in 
the case of indirect measurement the antiresonance points 
are absent.  
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Appendix 

Continuity of normal stresses on each interface 
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Zero shear stress on each interface 
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Above equations are generated the system of equation for 
the unknown coefficients in the matrix form as 
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By solving obtained system of equation, the outer normal 
velocity and also acoustic pressure on the shell can be 
determined as follow. 
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And consequently the radiated pressure by the shell can be 
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