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We used a cochlear implant simulation (noise-vocoded speech) to investigate speech recognition and
perceptual learning in hearing adult speakers of English. In two separate sessions (1-2 weeks apart),
28 listeners were tested on recognition of noise-vocoded sentences, words, consonants and vowels.
There was evidence of significant perceptual learning that survived until Session 2 for all tasks.
An individual differences analysis of Session 1 data suggested two independently-varying ‘levels’ of
processing during the initial perception of the distorted speech stimuli - a ‘top-down’ listening mode
making use of contextual and lexical information, and a ‘bottom-up’ mode focused on acoustic-phonetic
discriminations. By Session 2, a more general listening mode emerged, reflecting consolidation of basic
sound-to-representation mappings. Information Transfer analyses of consonant and vowel data suggested
that better speech recognition may be achieved through more efficient use of preserved cues to duration
and voicing. We conclude that training regimes involving directed attention to specific features, such as
vowel length, may help to improve performance with noise-vocoded speech.

1 Introduction

The recipient of a cochlear implant is faced with the
challenge of making sense of a new sound world. This
process of adaptation, or perceptual learning can take a
long time, with widely varying levels of success. Acous-
tic simulations of cochlear implants (e.g. noise-vocoding)
have been used with hearing participants to model learn-
ing after implantation [1, 2, 3, 4]. Many of these studies
employed group designs to identify successful training
regimes for learning. In the current study, we avoid the
use of explicit training routines and complex designs in
order to describe basic adaptation to a range of noise-
vocoded speech stimuli. Rather than adopt a group de-
sign, we harness individual differences to explore per-
ceptual trends, and how these change over time.

Noise-vocoding produces speech with degraded spectral
detail, by replacing the original signal by a variable num-
ber of amplitude-modulated noise bands. This degraded
speech sounds like a noisy whisper, and the addition
of further bands contributes to increased intelligibility.
An early study employing this transformation [5] tested
recognition of sentences, vowels and consonants vocoded
to 1, 2, 3 and 4 bands - that study showed differences in
overall performance on the different tasks, but there was
no description of the relationships between them. More
recently, experiments using vocoded stimuli have looked
for transfer of perceptual learning across stimulus cat-
egories in paradigms where the listeners are trained on
one linguistic category and tested on one or more others
[1, 2, 3, 4]. Such a paradigm complicates the interpreta-
tion of cross-task relationships in the data. However, ex-
tracting patterns of covariance can offer an extra insight
into the underlying perceptual processes. For example,
close correlation of speech recognition at segment, word
and sentence level may indicate a unified acoustic strat-
egy from the listener, whereas statistical independence
of sentence stimuli from words and segments may reflect
considerable importance for top-down processing strate-
gies.

There has been some debate about how best to measure
perceptual learning of speech. One approach compares
speech recognition scores in participants who had re-
ceived training with those who have not [1, 2]. Other au-
thors have included ‘pre-test’ measures of performance
to ensure that group differences after training do not
merely reflect selection effects [4]. However, these stud-
ies used a fixed level of spectral degradation for all stim-

uli, which introduces the risk of floor or ceiling effects.
An alternative method was presented in a meta-analysis
in which data sets from several cochlear implant simu-
lation experiments were modelled with sigmoidal curves
describing performance against the number of bands [6].
Comparison of the positions of these curves reflected the
relative difficulty of the materials used in each experi-
ment, but the authors found curve slope to be uninfor-
mative. A similar approach could be used to quantify
individual differences in performance and changes asso-
ciated with perceptual learning, within one experiment.

This experiment tests recognition of noise-vocoded sen-
tences, words and segments at a range of degradation
levels in a single group of hearing adults. Individual
measures of curve position and slope are used to assess
the inter-relationship of tasks; it is predicted that all the
tasks will correlate significantly, but that the sentences
and words tasks will covary strongly due to the effects of
top-down processing in the presence of a lack of acoustic
clarity. Two sentence corpora of differing overall com-
plexity and predictability are included to explore these
top-down effects. Listeners are tested on two separate
occasions at least 7 days apart, and significant learning
is predicted for all tasks. In contrast to previous au-
thors’ conclusions regarding slope, we hypothesize that
improved performance will be associated with both a
leftward shift and a steepening of the performance func-
tion.

2 Method

2.1 Participants

Participants were 28 monolingual speakers of British
English (aged 18-40, 12 male), with no language or hear-
ing problems. All were recruited from the UCL Depart-
ment of Psychology Subject Pool, and were näıve to
noise-vocoded speech.

2.2 Materials

Listeners were tested on perception of 5 different stim-
ulus types, all vocoded with 1, 2, 4, 8, 16 and 32 bands.
The items were also available in undistorted form. The
vocoding routine followed the general scheme described
in [5], with analysis and output filters between 100-
5000Hz and envelope extraction via half-wave rectifica-
tion and low-pass filtering at 400Hz.
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Simple Sentences. One-hundred-and-forty items from
the BKB sentence corpus [7], each with three keywords
(e.g. The clown had a funny face).
Low Predictability Sentences. One-hundred-and-
forty items from the IEEE sentence corpus [8], each with
five keywords (e.g. The birch canoe slid on the smooth
planks).
Single Words. One-hundred-and-forty items from the
phonemically-balanced Boothroyd AB lists [9] (e.g. gas,
mice, whip).
Consonants. Seventeen consonants: b, d, f, ě, Ã, k, l,
m, n, p, s, S, t, v, w, j, z. One token of each consonant
was recorded in the context /A:/-C-/A:/, where C is a
consonant e.g. apa, aga, ala.
Vowels. Seventeen vowels: æ, eI, A:, E:, i:, i@, e, I, aI,
3, 6, @U, u:, O:, aU, OI, 2. One token of each vowel was
recorded in the context /b/-V-/d/, where V is the vowel
e.g. bad, beard, boyed.

2.3 Design and Procedure

The listeners made two visits to the lab, separated by
7-15 days (N = 27: M = 10.44 days, SD = 2.69),
with the exception of one participant who could only
return after 78 days. All stimulus presentation rou-
tines were programmed and run in MATLAB v7.1 (The
Mathworks, Inc., Natick, MA).

Sentences and Words. Each session featured 70 items,
with 10 at each ‘distortion level’. Half of each item
list was labelled as Set A and the other half as Set B.
Fourteen participants received Set A items in Session
1, while the remainder received Set B items in Session
1. Within-session, a pseudorandomization routine en-
sured that the 70 items (i.e. their linguistic content)
were completely randomized across the task, but that
within each chronological block of 7 sentences there was
an example from each distortion level.
Consonants and Vowels. The Consonants and Vow-
els were tested separately. Each of the tokens was re-
peated at all of the seven distortion levels, and the whole
list of items was fully randomized. Exposure to the dis-
tortion levels was not chronologically constrained.

In each session, the tasks were administered in the or-
der: BKB sentences, IEEE sentences, Words, Conso-
nants, Vowels. All test materials were presented over
Sennheiser HD25-SP headphones in a quiet room, at a
fixed volume setting. The Sentences and Words tasks
were open-set recognition tasks. Each stimulus was
played once and the participant gave typed report of the
item content. Responses were self-timed. The Conso-
nants and Vowels tasks each adopted a 17-alternative
forced-choice paradigm. The response choices were pre-
sented on a printed sheet which remained in view for the
duration of the task. In these two tasks, listeners were
encouraged not to leave any gaps, even when they were
completely unsure of the answer.

3 Results

This section falls into two parts. In the first, psycho-
metric performance functions are fitted to each individ-

ual’s performance, and individual differences analyses
of curve position and slope used to characterize group
performance in the two sessions. The second part uses
Information Transfer analyses to unpack the perception
of consonants and vowels and relate this to recognition
of sentences and words.

3.1 Psychometric performance curves

Logistic curve-fitting on each individual data set was
carried out using the psignifit software package [10].
For superior fits, the distortion levels (number of bands)
were converted into their log10 equivalents. Data from
undistorted stimuli were not included. The equation
used for fitting was:

(f(x : α, β, γ, λ)) = γ +
1− γ − λ

1 + e−(x/α)β

(1)

In the output of the fitting procedure, the α parame-
ter corresponds to the curve’s displacement along the
abscissa for 50% of maximum performance), and β is
inversely proportional to the curve steepness. These
two parameters were extracted from each fitted curve
for use in subsequent analyses. The parameter γ cor-
responds to the base rate of performance (or ‘guessing
rate’), while λ reflects the ‘lapse rate’ i.e. a lowering
of the upper asymptote to allow for errors unrelated to
the stimulus level. The software takes a constrained
maximum-likelihood approach to fitting, where all four
variables are free to vary, but where, in this case, γ and
λ are constrained between 0.00 and 0.05. For the forced-
choice tasks (Consonants and Vowels), the γ parameter
was set to 1/17.

Figure 1 shows a plot of the group performance func-
tions for the open-set (1(a)) and closed-set (1(b)) tasks
in each Session. The raw scores indicated an overall de-
crease in α scores between Session 1 and 2, with a weaker
trend in the same direction for β. A repeated-measures
ANOVA analysis was run on the α scores with Session
as the within-subjects factor and Task as a between-
subjects factor. A second between-subjects factor, Ver-
sion (which coded the order of presentation of the item
sets) was also included, but no results involving this fac-
tor are reported here. There was a significant effect of
Session (F (1, 26) = 35.094, p = .000, η2 = .574, power
= 1.000), a significant effect of Task (F (4, 104) =
117.18, p = .000, η2 = .818, power = 1.000), and a
non-significant interaction of these two factors (F<1),
indicating that the degree of improvement was not sig-
nificantly different across tasks. The forced-choice na-
ture of the Consonants and Vowels tasks clearly has an
effect on their slopes. For this reason, analysis of β
scores was peformed in two separate ANOVAs. The first
included β values from the open-set recognition tasks
(BKB, IEEE and Words). This found non-significant
effects of Session (F (1, 26) = 2.80, p = .106, η2 = .097,
power = .364) but a significant effect of Task (Wilks’
Lambda F (2, 25) = 3.54, p = .044, η2 = .220, power
= .604). The interaction between Task and Session was
non-significant (F<1). The corresponding ANOVA on

Acoustics 08 Paris

3895



(a) Open Set Recognition- Sentences and Words

(b) Closed Set Recognition- Consonants and Vowels

Figure 1: Logistic curves describing group performance
on the speech recognition tasks (error bars show 95%

confidence limits around α).

slope parameters from the Consonants and Vowels tasks
gave a non-significant effect of Session (F<1) and a non-
significant interaction of Session and Task (F<1), but a
significant effect of Task (F (1, 26) = 6.00, p = .017,
η2 = .188, power = .655).

There was evidence of several significant relationships
across tasks for the α scores, but not between the β
values. Table 1(a) shows the one-tailed Pearson’s cor-
relation matrix for α scores in Session 1. These show
close intercorrelation of the Sentences and Words tasks
on one hand, and the Consonants, Vowels and Words
tasks on the other. A common factor analysis was run
on the threshold data, with maximum likelihood extrac-
tion and varimax rotation. The rotated factor matrix is
shown in Table 2(a), for those factors producing eigen-
values above 1. Two components were extracted. In
the rotated matrix, the first component accounted for
22.60% of the variance, while the second component ac-
counted for 19.21%.

The pattern of correlations for α scores in Session 2 no
longer fitted the processing framework suggested by the
Session 1 data (see Table 1(b)), with the Words task now
somewhat separate from the others. A Common Factor

Table 1: Cross-task correlations - α scores.

(a) Session 1

BKB IEEE Words Cons. Vowels

BKB 1.00 .356∗ .259† .003 -.100
IEEE 1.00 .323∗ .069 -.056
Words 1.00 .417∗ .331∗

Cons. 1.00 .302†

Vowels 1.00

(b) Session 2

BKB IEEE Words Cons. Vowels

BKB 1.00 .277† .333∗ .299† .236
IEEE 1.00 -.025 .393∗ .296†

Words 1.00 .015 .057
Cons. 1.00 .317†

Vowels 1.00

† =p<.10, ∗ =p<.05

Table 2: Factor analysis - α scores.

(a) Session 1

Factor 1 Factor 2

BKB .605
IEEE .593
Words .705 .469
Consonants .558
Vowels .562

(b) Session 2

Factor 1 Factor 2

BKB .520 .344
IEEE .545
Words .946
Consonants .642
Vowels .491

showing factor loadings greater than 0.3

Analysis (maximum likelihood extraction) was run on
the data, with varimax rotation. This converged on two
components - see Table 2(b). In this analysis, Factor
1 accounted for 24.41% of the variance, where Factor 2
accounted for a further 20.38%.

Table 3 shows one-tailed Pearson’s correlations between
α and β scores in each session, indicating that lower
thresholds were generally associated with steeper per-
formance functions. Taking a decrease in α or β to re-
flect an improvement in performance, the results also
indicate that those listeners who exhibited the highest
thresholds (i.e. most rightward curves) and shallowest
slopes in Session 1 were those who showed most improve-
ment by Session 2 (Table 4). This has been observed by
other authors [3].

3.2 Information Transfer analyses

Figure 2 shows group performance curves for a selection
of individual consonants in Session 1 and demonstrates
that the vocoding routine affects individual speech seg-
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Table 3: Correlations between α and β scores.

(a) Session 1

β

BKB IEEE Words Cons. Vowels

α

BKB .259† -.203 .045 .153 -.150

IEEE -.095 .096 .275† .108 -.122

Words -.164 .127 .499∗∗ -.277† .226

Cons. -.212 .136 .482∗∗ -.169 .270†

Vowels -.011 -.237 .444∗∗ -.031 .453∗∗

(b) Session 2

β

BKB IEEE Words Cons. Vowels

α

BKB -.257† .110 -.094 -.046 .101

IEEE .450∗∗ -.140 -.187 -.109 .271†

Words -.076 .002 .492∗∗ -.156 .397∗

Cons. .065 .057 -.280† .438∗∗ .160
Vowels .140 .033 -.129 .025 .364∗

† =p<.10 ∗ = p<.05, ∗∗ = p<.01

Table 4: Relationship between Session 1 performance
and improvement by Session 2.

α β

BKB .485∗∗ .802∗∗∗

IEEE .751∗∗∗ .726∗∗∗

Words .677∗∗∗ .736∗∗∗

Consonants .550∗∗ .863∗∗

Vowels .686∗∗∗ .622∗∗

∗∗ = p<.01, ∗ ∗ ∗ = p<.001; one-tailed.

ments differently. The forced-choice nature of the seg-
ment recognition tasks meant that the data could be ar-
ranged into confusion matrices for use in an Information
Transfer analysis. This enabled description of consonant
and vowel recognition in terms of the transmission of
their component phonetic features. Only complete data
sets, i.e those without omissions or off-list responses,
were included.

Analyses were run in FIX (Feature Information XFer,
UCL, UK), for each session and task separately. In the
analyses, the 17 consonants were coded for the features
Voicing, Place and Manner. The vowels were coded for
Height, Backness, Roundedness, Length and Mono/
Diphthong status. Each analysis contained data from
14 participants. Table 5 shows the mean proportion of
available information transferred for each feature.

The Information Transfer scores for Voicing, Place and
Manner in each Session were entered as predictors in lin-
ear regression analyses on the α scores for the five over-
all tasks. In Session 1, a significant model with Place
and Voicing as predictors offered the best account of
Consonant recognition (R2

adj. = .750; F (2, 11) = 21.71,
p = .001) . Performance on the Vowels task was best
predicted by Voicing (R2

adj. = .295; F (1, 12) = 6.44,
p = .026). In Session 2, Manner and Place predicted α
scores on the Consonants task (R2

adj. = .580; F (1, 12) =
9.98, p = .003), while Manner scores predicted α scores

Figure 2: Group performance curves for individual
consonants (error bars show 95% confidence limits

around α).

Table 5: Results of Information Transfer analyses
(proportion scores)

(a) Consonants

Session 1 Session 2

Voicing .498 (.089) .604 (.111)
Manner .646 (.045) .723 (.064)
Place .483 (.042) .512 (.039)

(b) Vowels

Session 1 Session 2

Height .456 (.048) .493 (.039)
Backness .392 (.050) .424 (.040)
Roundedness .379 (.047) .422 (.063)
Length .632 (.183) .707 (.181)
Diphthong .318 (.065) .345 (.054)

standard deviations given in brackets

on the IEEE sentences (R2
adj. = .270; F (1, 12) = 5.80,

p = .033). A similar set of regressions was run with
the five vowel features as predictors. In Session 1, a sig-
nificant model featured Height as the sole predictor of
α scores on the Vowels task (R2

adj. = .743; F (1, 12) =
38.68, p = .000). In Session 2, a significant model with
Height and Length (R2

adj. = .772; F (1, 12) = 28.51,
p = .000) gave the best prediction of α scores on the
Vowels task, while a model with Length emerged as a
significant predictor of performance on the BKB sen-
tences (R2

adj. = .308; F (1, 12) = 6.80, p = .023).

4 Discussion

The current data set supports the projected hypotheses.
There was evidence for long-term perceptual learning of
noise-vocoded sentences, words and segments. Using
individual differences as the starting point for analyses,
we identified a pattern of commonalities amongst the
tasks, which changed with learning. Analyses of confu-
sion data revealed predictive roles for specific phonetic
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features in the perception of noise-vocoded stimuli.

Factor analysis of Session 1 α scores showed two similarly-
weighted, orthogonal factors, with sentences and words
loading on one factor, and words and segments loading
on the other. This suggests two independent modes of
listening: a ‘top-down’ mode making use of lexical, syn-
tactic and semantic information to generate hypothe-
ses about stimulus identity, and a ‘bottom-up’ mode
concerned with acoustic-phonetic discriminations. By
the second session, when performance had improved, all
tasks but one - Words - patterned together. It appears
that once the initial learning of sound-to-representation
mappings has taken place, the listener can begin to
approach most stimulus types in a similar way. The
plot in Figure 1(a) shows that the Words task was the
most difficult of the open-set tasks in both sessions, and
showed the least improvement overall by Session 2 (al-
though a Task x Session interaction was not borne out
significantly). Within the open-set tasks, the overall
amount of exposure to vocoded material across seventy
sentences is much greater than for seventy monosyl-
labic words. However, a previous study showed that,
even when matched for number of words of exposure,
learning is still slower for noise-vocoded words than for
sentences [2]. These authors interpret such findings in
terms of the relative richness of the “teaching signal”
that assists learning. In the current experiment, the lis-
tener could draw upon many more sources of knowledge
against which to test hypotheses for sentence recogni-
tion than they could for isolated words. Furthermore,
the segment recognition tasks provided a learning frame-
work through their forced-choice design.

This study did not directly test the finding in [6], that
perceptual data for different categories of vocoded stim-
uli could be fitted equally well with curves of a fixed
slope. However, we aimed to challenge the suggestion
that slope may be uninformative. The current data set
indicated that both α and β parameters decrease with
perceptual learning, thus associating a leftward shift and
steepening of the performance function with improved
performance. However, the results were equivocal for
the β parameter, as the effect of Session did not reach
significance in the main ANOVA analyses. Similarly,
while there was an indication of an association between
the steepness of the slope and the ease of the task for
open-set materials, it was also clear that overall task
structure (open- versus closed-set) had a considerable
effect on slope values. In conclusion, rigorous analysis
of β values cannot add to the interpretation based on
the α parameter.

The use of Information Transfer analyses produced find-
ings unattainable from basic recognition scores. We
identified significant roles for voicing and vowel length
information in recognizing noise-vocoded stimuli. Both
of these properties were well represented at low spec-
tral resolutions in the current stimuli - in particular,
vowel length information was fully present even in 1-
band stimuli. However, Table 5 shows that listeners’
accuracy on these features was much less than 100% in
both sessions. We suggest that targeted training of dis-

criminations based on these properties may assist in the
mapping of sounds to representation in the early stages
of perceptual adaptation to vocoded stimuli.

5 Conclusions

In sum, we have shown that harnessing individual dif-
ferences in participants’ performance can yield rich data
sets with which to advance our current understanding
of perceptual learning of speech.
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