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Cylindrical parts are widely used in industry at very different scales from rotating axis of engines to
carbon fibers used in composite materials. Consequently, an increasing demand exists for their non
destructive evaluation. The laser ultrasonics technique providing a non-contact generation and detection
process is suited for the study of acoustic waves in cylindrical structures. In previous works, authors
have studied millimetric-sized cylinders. In this paper, we present first result obtained on a tungsten
micrometric fiber thanks to a pump-probe femtosecond laser technique. Experiments are compared to a
two dimensionnal model for acoustic waves generation and propagation in cylinders taking into account
light penetration depth.

1 Introduction

Having emerged in the 80s, the laser ultrasonics tech-
nique with its non-contact generation and detection pro-
cess overpasses the difficulties of coupling piezoelectric
transducers with curved surfaces. To date, the authors
[1] have been interested in acoustic generation for opaque
cylinders where the acoustic source is located at the
cylinder surface.

In this work, assuming line focusing of the laser pulses,
we propose a two-dimensional (2D) semi-analytical model
for acoustic waves generation and propagation in a partly
transparent isotropic cylinder. First, the radial displace-
ment at any position on the free surface is derived, in
a 2D Fourier domain, for an inner point source. The
response to a volume-source distribution along a radius
is obtained as a convolution of the above Green func-
tion with the corresponding source distribution caused
by optical absorption. Two inverse transforms are then
applied to obtain the radial displacement at the cylinder
surface.

Second, picosecond ultrasonics experiments are per-
formed on a tungsten micrometric fiber of 5 µm diameter
and compared with calculated waveforms.

2 Photoelastic generation in fibers

Let us consider a homogenous and isotropic cylinder of
infinite length, radius a, and density ρ. Line focusing
of a laser pulse at the cylinder surface along its z-axis
is assumed. The thermoelastic fields due to the laser
line pulse along the z-axis direction are governed by the
following coupled equations of thermoelasticity

∇ · (¯̄κ : ∇T ) + T0β∇ · ∂u
∂t −Q = ρCp

∂T
∂t ,

(λ+ 2µ) ∇∇ · u− µ∇×∇× u = ρ∂
2u
∂t2 + β̃∇T

(1)
where ¯̄κ is the thermal conductivity tensor of the second
order, T0 the room temperature expressed in Kelvin,
β = 3λ + 2µ the thermal modulus with λ and µ the
Lamé coefficients and Cp the specific heat. The source
term Q in the heat equation (1.1) is due to the laser op-
tical pulse and corresponds to an opto-thermal energy
conversion and is expressed in unit of a volume density
power ([Wm−3]). The second equation (1.2) stands for
the well known equilibrium law where u is the displace-
ment vector and β̃ = β/(λ+ 2µ).

Thermal source Q(r, θ, t) expresses a volume distri-
bution of optical sources in the cylinder due to optical
absorption over a characteristic length α−1, where α is
the extinction coefficient. According to the symmetry
of the problem, absorption phenomena lies essentially
in the radial direction whereas orthoradial dependance
is only due to the width of the line source included

in the model by mean of the gaussian shape function
g(θ) = 1/(2a γ

√
π)e−θ

2/4γ2
[m−1] where γ is the angle

corresponding to the linewidth. So, the thermal source
Q can be written in the following form,

Q(r, θ, t) = αE g(θ) δ(t)D(r),

where D(r) =
{
e−α (a−r), θ = 0
e−α (a+r), θ = π

(2)

The incoming lineic laser energy E0 ([Jm−1]) is partially
reflected at the surface of the sample with the reflection
coefficient R. Thus, the transmitted energy is given by
E = E0(1−R).

We assume that the evolution of the temperature
field doesn’t depend on the mechanical field u and so
the coupling term can be neglected in equation (1.1)
leading to a partly coupled thermoelasticity problem. In
this work, we are mainly interested in very few thermal
diffusive materials and so we neglect heat conduction.
First, solving (1.1) we derive the temperature elevation
field ∆T

∆T (r, θ, t) =
αE

ρCp
g(θ)H(t)D(r) (3)

We find out a temperature elevation field ∆T with a
Heaviside time dependance H(t) satisfying the assump-
tion of no heat conduction. Then, thermal field being
obtained we can solve the uncoupled mechanical prob-
lem,

∇2ϕ− 1
c2L

∂2ϕ
∂t2 = β̃∆T,

∇2ψ − 1
c2T

∂2ψ
∂t2 = 0

(4)

where ϕ and Ψ are scalar and vector potentials respec-
tively and cL =

√
ρ

λ+2µ , cT =
√

ρ
2µ are the longitudinal

respectively shear wave velocities. Free boundary con-
dition is considered,

σrr(r = a) = 0 ,
σrθ(r = a) = 0 (5)

3 Transformed displacement so-
lution in term of potential Green
function

In order to derive a solution to the above boundary
value problem, let us derive the Green function G(r|r0),
expressed in a potential form, for the interior prob-
lem of a dilatational line source located at the position
(r0 < a, θ0 = 0) inside the cylinder.

∇2g(r|r0) + p2g(r|r0) = β̃ δ(r−r0)
r0

,

∇2ψ(r|r0) + s2ψ(r|r0) = 0
(6)
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with p = ω/cL and s = ω/cT . Then the so-called Green
function is explicitly given by

G(r|r0) = ∇g(r|r0) + ∇×ψ(r|r0) (7)

Where g(r|r0) and ψ(r|r0) are respectively solution of
(6.1) and (6.2).

Solution for (6.1) may be sought as a linear combi-
naison of the two independent solutions of the homoge-
neous Helmolthz equation[2]

g(r|r0) = Aν Jν(pr)H(r0 − r) + ·
[Bν Yν(pr) + Cν Jν(pr)]H(r − r0), r0 < a (8)

where H(r) corresponds to a radial Heaviside distribu-
tion. Solution of (6.2) gives us another unknown con-
stant Dν to find out,

ψ(r|r0) = Dν Jν(sr) (9)

Four constants have to be found out injecting expres-
sions of g(r|r0) and ψ(r|r0) into the two equations of
boundary condition. Consideration on continuity prop-
erties between the left hand side of equation (6.1) and
the δ-function in the right hand side gives us two ad-
ditional equations which permit to determinate the two
others constants. Solving the corresponding linear sys-
tem of equations allows us to derive the Green function
for the radial displacement at a given position at the
surface of the cylinder due to a dilatational line source
located into the cylinder with the corresponding free
boundary conditions.

Gvr(a|r0, ν, ω) =
π β̃

2 a
Jν(pr0)

[
Yν(pa)

(
Ya −

Eν
Dν
Pa
)

+

+
2ν2

πDν

(
1− ν2 +

s2a2

2

)]
(10)

with Ya = paY ′(pa)/Y (pa), Pa = paJ ′(pa)/J(pa), Sa =
saJ ′(sa)/J(sa), and where Dν(ν, ω) = 0 corresponds to
the dispersion equation, and

Eν =
(
ν2 − s2a2

2

)2

− ν2 +
s2a2

2
(Pa + Ya)+

+ (1− ν2)PaYa (11)

The radial displacement field is then theoretically
derived thanks to a convolution between the radial com-
ponent of the Green function Gvr(a|r0), due to an inside
dilatational line source, and the radial distribution of
acoustic sources which is in our case related to the ther-
mal field.

Ur(a, ν, ω) =
∫ a−

0

Gvr(a|r0, ν, ω)T (r0, ν, ω)r0dr0 (12)

Finally, radial displacement in the real space is ob-
tained using 2D inverse Fourier Transform. In order to
avoid difficulties in numerical integration due to poles
of the dispersion equation Dν(ν, ω) = 0, Weaver[3] pro-
posed to introduce a small imaginary part in the fre-
quency variable ω∗ = ω − δ to move the poles out of
the real axis.

Ur(a, θ, t) =
eδt

2π

∫ ∞
−∞

∞∑
ν=−∞

Ur(a, ν, ω)e(νθ−ωt)dω

Noting that Ur(r, ν, ω) is an even function for the ν vari-
able, radial displacement can be rewritten as following,

Ur(a, θ, t) =
eδt

π

∫ ∞
−∞

{ ∞∑
ν=0

Ur(a, ν, ω)cos(νθ)
}
e−ωtdω

4 Numerical and Experimental val-
idation

Picosecond ultrasonics setup (Fig.1) is used to perform
experiments on a tungsten micrometric fiber with a di-
ameter of 5 µm. Generation and detection points are
spatially superposed and shifted in time thanks to a de-
lay line providing a time resolved technique[4]. Tung-
sten fiber is stretched at its bounds and is totally free of
contact over a distance of one millimeter in order to pre-
vent any perturbation of the cylindrical surface waves.
Beam distorsion detection (bdd) technique[5] is applied

Figure 1: Picosecond ultrasonics setup.

to measure reflectivity changes in the sample. This mea-
sured quantity is composed of an imaginary term due to
an interferometric component, and of two reflectometric
components with and without diaphragm on the probe
beam path.

∆R
R0

= 
∆Ri
R0

+
∆Rr
R0

+
∆Rd
R0

(13)

In the remainder of the paper, we focus on the reflecto-
metric part of the signal (i.e. real part of equation (13))
because interferometric component ∆Ri

R0
is not mea-

sured. Whereas ∆Rr/R0 is related to strain, Chigarev[5]
has shown that ∆Rd/R0 can be estimated as a term
proportionnal to the displacement of the surface of the
sample when a small diaphragm aperture is used. For
tungsten, acoustic wavelentgh is about Λ ≈ 50 nm which
is the same order as the light penetration ξ ≈ 20 nm and
in this case we obtain ∆Rd/∆Rr ≈ 1[5]. Thus, the mea-
sured signal is a mixture of the strain and displacement
signals.

The wavelength of the pump beam is 400 nm whereas
that of the probe one is 800 nm, and the auto-correlation
width of the two beams is measured as 1 µm. Exper-
imental result is compared to a numerical simulation
obtained with the two-dimensionnal photoelastic model
for fibers for a source width of 0.5 µm. Imaginary part of
the frequency, used to remove poles from the real axis, is

Acoustics 08 Paris

1743



introduced with the numerical parameter δ = 0.02. Ma-
terial constants used for simulation are c11 = 522 GPa,
c12 = 200 GPa, ρ = 19.3 g.cm−3, a small imaginary part
is introduced in the stiffeness coefficients c∗ij = cij + ωη

with η = 0.05 GPa.s−1 to take into account attenuation
of acoustical waves. Reflexion coefficient for tungsten is
choosen to be R = 0.5.

Figure 2: Comparison between bdd experiment signal
(top) and theoretical displacement (bottom) on

tungsten fiber of 5 µm diameter. Thermal background
was removed from the experimental data.

A quite good agreement is obtained (Fig.2) in term
of time arrivals for the longitudinal waves 2L, 4L prop-
agating back-and-forth through the fiber. Strong atten-
uation is observed for the 4L echo which has travelled
about 20 µm and encountered up to three successive
reflexions. As expected Rayleigh wave R1 is clearly de-
tected with a spread shape echo.

Figure 3: Photograph of a tungsten micrometric fiber
captured from Scanning Electron Microscopy.

This comparison is a very first step in the under-
standing of acoustic waves propagation in such micro-
metric fiber. The mixture between strain and displace-
ment in the measured signal doesn’t allow to clearly
compare the shape of the echoes but only their time ar-
rivals. Numerical simulation permits us to identify main
arrivals as longitudinal reflexions 2L, 4L and Rayleigh
wave R1. However, even if other peaks are not clearly
identified we can expect that some correspond to trans-
verse or waves resulting of mode conversion. Then, it
would be possible to obtain information on the stiffness

coefficient c12. One limitation concerns the building pro-
cess of this kind of metallic fibers which implies a quite
bad surface quality of the fiber explaining the bad Signal
to Noise Ratio. Scanning Electron Microscopy technique
allows to access an image (Fig.3) of the fiber surface and
confirms the bad surface quality of this sample.

5 Conclusion

Time resolved picosecond ultrasonics technique is espe-
cially suited for the study of acoustical physics in mi-
crometric or sub-micrometric structures. At these low
scales, photo-thermal mechanisms have to be considered
for the waves generation process taking into account
the light penetration depth in the sample. We propose
a two-dimensionnal photo-elastic model for generation
and propagation of acoustical waves in cylindrical struc-
tures based on a radial displacement Green function.
Convolution theorem is then applied to obtain the re-
sponse to a radial distribution of acoustic sources. The-
oretical results are compared to a picosecond ultrasonics
experiment on a tungsten micrometric fiber with a di-
ameter of 5 µm. Good agreement is obtained in term
of time arrivals and main echoes were identified like the
diametrically sequences of longitudinal waves 2L, 4L,
and the cylindrical Rayleigh wave R1. However, further
study has to be achieved to identify other interesting
peaks that could represent transverse or waves resulting
of mode conversion useful to perform the inverse prob-
lem for such micrometric fiber.
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