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This paper presents techniques developed to incorporate complex 3D objects within the author's own Finite 
Difference Time Domain based acoustic prediction application. Using a combination of 3D laser scanning, ray 
based voxellisation and a least pth norm based filter design approach to emulate the absorption profiles of non 
rigid boundaries; complex objects can be incorporated into a variety of acoustic prediction scenarios. The paper 
will evaluate the success of the approach and explore its application.  

1 Introduction 

This paper will discuss the laser scanning and voxelisation 
of arbitrarily shaped objects for use within the author’s 3D 
Finite Difference Time Domain (FDTD) based acoustic 
prediction software (‘Wave Tank’). The author will also 
demonstrate his approach to modelling arbitrary frequency 
dependant absorption profiles assigned to the surfaces 
elements of the voxellised objects. 
 
Originally developed as a computational electrodynamics 
modelling technique [1], FDTD has found popularity in 
modelling broadband sound propagation phenomena [2] 
including frequency dependant absorption, diffraction and 
interference. The acoustic implementation of FDTD 
considers sound propagation as coupled equations Eq.(1) 
and Eq.(2).  
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where p is pressure, w  is particle velocity, ρ  is the 
density of medium and K  the bulk modulus. Writing 
equations Eq.(1) and Eq.(2) in centre difference forms gives 
equations Eq.(3) Eq.(4) Eq.(5) and Eq.(6) where i, j and k 
represent grid locations and n represents time steps.  
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Hence the medium is effectively represented as interleaved 
3D grids of pressure and velocities respectively with 
neighbouring pressure and velocity nodes separated by a 
half step. To avoid reflections at grid terminations Perfectly 
Matched Layers (PMLs) [3] are implemented to introduce 
gradual absorption whilst keeping the impedance constant. 
By adding or setting pressures within specified grid 
positions various source types can be emulated. Though to 
implement sources that are ‘transparent’ (i.e. don’t scatter 
incident waves yet preserve the desired driving function) 
the impulse response of the medium must effectively be 
removed from the source driving function [4].  

2 Voxelisation 

Voxellisation parses complex 3D data to extract plane and 
absorption data (if provided) which is hence used to set 
corresponding elements within the 3D FDTD grid. Data 
types parsed by the author’s software include X3D, 
ODEON and CATT. Note X3D is a popular export format 
from common 3D file creation software and thus allows the 
author to utilise a wider range of formats including DFX, 
3D Studio Max, Google Sketch up, etc. Although there are 
some fast voxelisation techniques documented in computer 
graphics literature the author uses a simple ray based 
approach describe here. Consider a plane given by its 

vertices ip  where i  indexes into an array of N vertices 

such that 1...3,2,1,0 −= Ni . The plane can also be 
described by the equation 
 

pn ⋅= ˆD      (7) 
 
where p is a point the plane and D is a constant scalar and 
n̂  is the plane’s unit normal found using the vector cross 
product  
 

( ) ( )1012 ppppn −×−= .    (8) 
 
Also consider a ray r such that 
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where s is the start vector  position, c is the direction vector, 
and t a scalar distance or time value.  The ray intersects the 
plane at 
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This gives the point of intersection r which can be tested as 
to whether it’s within the plane’s boundary by considering 

the normal vectors in  formed with respect to r  and all 

adjacent plane vertices ip  and 1+ip such that 
 

( ) ( )rprpn −×−= +1iii    (11) 
 
If the sense of all dot products  
 

idp nn ˆˆ ⋅=      (12) 
 
are consistent then the point is within the plane boundary. 
 
For each empty FDTD grid element found to correspond to 
a ray/plane intersection; parameters are set to indicate 
appropriate reflecting properties. Fig.1 shows an example 
of such a ray fired at a plane. 
 

 
Fig.1. A ray is fired at plane to test if it corresponds with a 
voxel of the grid 

3 Emulating frequency dependant 
absorption 

The author’s approach to emulating frequency dependant 
absorption utilises octave banded absorption coefficients to 
specify the magnitude response of filters. These filter’s IIR 
coefficients are hence computed via a quasi-netwon based 
optimisation technique. An assumption was made that a 
velocity component at a surface element can be given as a 
function of the history of normal velocity components 

incident and the history previous outputs from this function, 
for example… 
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where 
n
xw  is given by Eq.(3) and xn  is the x component 

of the surface’s absolute unit normal. The outputw  
velocity becomes an input argument to equation 6 hence the 
approach suggested is easy to integrate into the FDTD 
iterative cycle. The Eq.(13) is in effect the difference 
equation of an IIR filter which could written as 
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The filter coefficients Naaah ,...,, 210   Nbbbb ,...,, 210  
can be found from the plane’s octave banded absorption 

coefficients ( )ωα  where  
 

πππω 2
4000,...,2
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The author’s implementation considers transmission 
coefficients such that Eq.(15) is the desired magnitude 
response of a filter. 
  

( ) ( )ωαω −−= 11dH    (15) 
 
A least pth norm based filter design approach was hence 
employed to find the desired coefficients. The approach 
employ’s Newton method in optimisation to find 

[ ]TNN bbbaaah ...,,...,, 21210=x from the minimised 
the Lp-norm objective function 
   

( ) ( ) ωωω dHHE d∫ −= 2)(x    (16) 

where  
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It can be shown [5] that the gradient of the error function in 
Eq.(16) is 
 

( ) ( )( ) ( )( )[ ] ωωωω dHHHE d∫ ∇−=∇ *Re2)(x  
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and  
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where the corresponding derivatives with respect to 
elements of x are given by 
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Similarly the Hessian matrix can be given by Eq.(23) with 
component derivatives of the matrix easily evaluated.  
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An iterative scheme (Eq.(24)) can be applied to minimise 
the error function and hence give filter coefficients 
approximating towards the desired response where 

10 << α , 3≈β ,  iterationsk ...3,2,1,0= . 
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However for reasons of computational efficiency the author 
later adopted a Quasi-Newton approach that uses an 

approximation of the inverse Hessian matrix kB . Here the 
iterative scheme can be written as  
 

kk1k δxx kα−=+    (25) 
 

where the descent direction 
 

kkk EBδ ∇−=    (26) 
 

The step size kα  is found by a line search to ensure the 
descent satisfies Wolfe conditions and hence gives 
sufficient decrease. By considering a change in gradient  
 

k1kk EEγ ∇−∇= +    (27) 
 
the Davidon-Flecture-Powell update formula (Eq.(28)) was 
employed changing B every iteration from an initial 
identity matrix assumption.   
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An outline of the Quasi Newton approach is given in [6] 
though readers interested implementing in C++, C#, Java, 
etc may instead choose efficient third party generic 
optimisation classes, e.g. [7] in conjunction with Eq.(16) to 
Eq.(22). 

4 3D Laser Scanning 

As well as utilising a 3D data from the huge range of 
repositories available the author has explored 3D laser 
scanning as a way implementing more specific prediction 
scenarios. A Konica Minolta VI-910 3D laser scanner was 
used. The equipment allowed one to place a figurine on a 
rotating plate and hence take a series of eight or so scans at 
varying side angles. A top down scan was also needed. 
Using Doppler laser interferometry the device is able to 
generate list of appropriately positioned polygons. Similar 
points indentified on the scans (e.g. tips of ears, toes and 
eyes) were subsequently manually registered to allow the 
scanner’s software to knit together the separate scans and 
fill any remaining gaps to create a full 3D representation of 
the mouse. The 3D file was hence saved and converted to 
X3D, a file format that can be parsed by the author’s ‘Wave 
Tank’ application. Note the mouse consisted of some 79000 
triangles. 
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Fig.2. Mouse figurine being scanned and 3D Laser scanner 

5 FDTD emulated sound 
propagation 

Fig.3. has plan, elevations and a 3D view of the FDTD 
predicted sound field approaching the mouse.  

 

 
Fig.3. A 3D view and side views of simulation. 
 
By placing a Gaussian pulse source at varying points in 
front of the mouse and detectors near the mouse’s ears; one 
can demonstrate the technique’s potential for say predicting 

the binaural hearing of the mouse. Fig.4 shows the record 
pressure responses at the mouse’s separate ears. 

 
Fig.4. Pressure impulse responses at ears of mouse in 
‘Wave Tank’ prediction.  
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