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Coatings of new type recently proposed in (Acoustical Physics, 2007, vol. 53, N5, pp. 535-545) are applied to 
bodies of the cylindrical geometry to reduce reflection or scattering of sound and thus to make them undetectable
by imaging systems. It is shown by computer simulation that a rather simple coating of this type can reduce the
back-scattered pressure amplitude more than 40 dB with respect to the rigid cylinder practically at all
frequencies. Considerable reduction of the scattered power can also be achieved but in a low frequency range. 
The width of this range and the reduction index depend on the number of couplings introduced into the coating.

1 Introduction 

Most acoustic imaging systems are based on insonification
of an object and analysis of the sound energy that is
reflected or scattered by the object [1]. If the object does
not reflect or scatter sound it cannot be detected by such 
systems. Acoustical invisibility is understood, in this paper,
just as nonreflecting or nonscattering. The purpose of the
paper is to show how to make an arbitrary body
acoustically invisible with the help of a thin passive coating
recently proposed in [2], to illustrate its work on bodies of 
cylindrical geometry and compare its efficiency with that of 
existing methods. But before this, a brief account of the
state-of-the-art of the acoustical invisibility problem is
given.

Pulse-echo techniques that provide cross-sectional images
of objects are the simplest techniques used in sonar (and
radar) systems as well as in Nature by certain animals (bats, 
dolphins). Information about the object is derived from the
signals reflected from the object back to the sound source.
To make the object invisible means, in this case, to 
suppress backscattering. As commonly accepted, the best
way to do so is to make the object surface absorptive like 
the surface of the black body. By definition, the black body, 
introduced by Kirchhoff in 1859, absorbs all the wave 
energy that falls upon its surface and, as a consequence,
does not reflect back. There are some bodies and coatings
that behave like the black body, e.g. the matched coating

(that has the local impedance c) and the so-called body of 
Macdonald. At high frequencies they are almost invisible
with respect to pulse-echo systems [3,4].

Much more difficult is the problem of making a body
invisible with respect to more sophisticated imaging
systems that use the scattered field in a wide range of 
angles. An invisible body should, in this case, be
indiscernible from the fluid displaced by the body, i.e. 
acoustically transparent (nonscattering). In particular, such 
a body should absorb the incident wave on the insonified
side of the surface and reradiate it from the opposite
(shadow) side of the surface. Note, that since the black
body casts the shadow it is visible in transmission field.

In the literature, there are several solutions to the problem
of suppressing the scattered field. The most elaborated are 
the active methods of Maluzhinets, JMC (Jessel-Mangiant-
Canevet) and others that are based on the Huygens
principle. In these methods, the total acoustic field is
measured around the object and, by the use of the integral
operator of Helmholtz-Huygens, is decomposed into the
incoming (incident) component and the outgoing (scattered)
component. The scattered component is then suppressed by
a set of acoustic actuators that envelope the object and 
sensors. The methods are verified in laboratory
experiments. Reviews of the literature on the subject can be
found elsewhere [5,6]. One more active method is

described in paper [6]. It differs from the methods
mentioned above by the use of structural sensors and 
actuators.

Principally different method of suppressing the scattered
field is proposed in paper [2]. Here the problem is solved
with the help a thin passive coating called as a coating of 
extended reaction (CER). The coating represents a periodic
surface structure of identical small wave size elements. The 
distinguishing feature of a CER is the introduction of 
couplings between neighboring elements. Owing to these
correctly chosen couplings the efficiency of CERs can be 
made much higher than that of the existing coatings. In the
case of the plane geometry high efficiency of CERs is 
shown theoretically in paper [2]. In the present paper, CERs
are applied to bodies of the cylindrical geometry and its
high efficiency is demonstrated in computer simulation
examples.

In conclusion of the review, it is worth mentioning that the
problem of an invisible cloak, i.e. of a nonscattering
coating, is now intensely studied in optics. But the majority
of the scientific papers here develop one idea: to construct a 
matching coating-waveguide that makes the light rays trace
round the object without reflection or scattering. Existence
of such a solution is mathematically proved, but no 

substantial implementation has been reported so 
far [7,8]. 

2 Impedance solution to the
scattering problem 

Let in a fluid medium c be an infinite circular cylinder of 
radius a which is insonified by a plane wave of the

complex amplitude pi  at an angle /2- to the cylinder

axis x. In the cylindrical coordinates (x, r,  ) the incident
wave is written as
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Here vi is the radial component of the fluid particle

velocity, m is the Neumann's function, kx =ksin , k
=kcos , and zim  is the specific surface impedance of the 
cylindrical volume of the fluid with respect to an external 
excitation in the form of m-th circular mode

 cos(m )exp(ikx x).         (2) 
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These impedances will be called as the internal modal
impedances of the fluid. Similarly, the field component
scattered by the cylinder can be written as 

where zrm is the specific radiation impedance of m-th
mode, i.e. the specific impedance of the exterior fluid with
respect to the excitation (2) applied to the surface r=a.

As the cylinder is assumed to be uniform and axially
symmetric it is fully characterized by a set of the modal
impedances in vacuo with respect to the excitation (2).

These impedances, normalized with c, are designated as 
zm .

The scattering problem for such a cylinder is tractable
analytically and its solution can be found in the literature, 
e.g., in [9]. Here, this solution is represented in an
impedance form in accordance with the new (impedance)
theory of scattering [10] used in the present work. 
Following the theory, two modal scattering coefficients, Sm

for the pressure and Qm for the radial velocity, are defined
on the cylinder surface 

vsm = Qm vim ,      psm = Sm pim . (4)

These coefficients can be found from the following
generalized Fresnel's equations

where yj =1/zj  (j=m, im, rm) are the specific modal
mobilities (admittances). Equations (4), (5) express the
solution to the problem via the incident field and three
impedances – the cylinder impedance zm and two fluid
impedances, zim  and zrm .
As an index of transparency TI  of a cylinder we use the 
normalized scattering cross-section. It is defined as the ratio
of the power of sound scattered by 1m of the cylinder to the
power of sound incident on 1m of the cylinder: the smaller
TI  the lower scattering and the more transparent the
cylinder. Using equations (1) and (3) one can derive the
following formulae for TI:

As a measure of the cylinder ability to reflect sound back to 
the source accepted is the so called backscattered form

function BFF [11], i.e. the normalized backscattered 

pressure amplitude at r=R  , = :
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The reference amplitude is pref =pi (a/2R)1/2 . In the 
numerical examples below, in the frequency range ka < 10 
the number of modes is restricted by m < 100 and
R=100a.

3     Coating of extended reaction (CER) 

Fig.1 presents a schematic of one of the simplest CERs for 
a cylinder. This is a two dimensional periodic structure

consisting of identical elements of size lx x l . Each
element is characterized by impedance Z0 and is coupled

with the first neighbors by impedance Z1 in the  -
direction and by Z'1  in x –direction. It means that the 
neighbors are acting on each other with forces

),(),( ,1,1,,11 jnjnjnjn vvZvvZ

so that forced vibrations of the whole coating are described
by a set of the following linear difference equations
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where vn,j denotes the complex amplitude of the radial
velocity of the coating element with indexes n, j;
n=1,2,…,N; j (- , ).
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Fig.1. Schematic of a cylindrical coating of extended
reaction.

Since the wave size of the coating element is assumed small
it is convenient to pass from the difference equations (8) to
the following continuous equation
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where q=f/l lx is the surface density of the external force 

(pressure), =x/a,   and 
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The modal specific impedance of the cylinder with the
coating is computed from equation (9) where the external 
force q  is taken in the form of a cylindrical mode (2): 

The modal impedance of the coated cylinder is, thus,
linearly dependent on three impedance structural
parameters Z0 , Z1 and Z1'. If the coating elements are 
coupled to the second, third, etc. neighbors the order of
differential equation (9) becomes  4, 6, etc., and the number
of the structural parameters increases.

In what follows, the optimal values of the structural 
parameters which render minimum to the goal function (6) 
or (7) are first found. Unfortunately, this variational
problem is not tractable analytically even in the simplest
cases, so it is solved here numerically. After that the
efficiency of such optimal CERs is computed and compared
to that of some existing ones.

4 Efficiency of CERs 

Fig.2 represents the optimal values of impedance Z0 / c of
an element of the best local coating that minimizes the 
backscattered pressure amplitude (7): the real part of the
impedance (resistance) is shown by a solid line, and the
imaginary part – by a dashed line. At high frequencies it is
close to the impedance of the matched coating. At low and 
middle frequencies it demonstrates low quality resonances.
The efficiency of this optimal local coating is shown in
Fig.3 (curve 3). As is seen from the figure, optimization of 
a local coating leads practically to full suppression of back 
scattering. In a wide frequency range (ka>0.4), the 
amplitude of the backscattered pressure is more that 40 dB
lower than the amplitude reflected from the rigid cylinder 
(curve 1). It is also much better than the efficiency of the
matched coating (curve 2). 

    Fig.2. Specific impedance Z0 / c of a local coating 
that minimizes the backscattering pressure 
amplitude: 1 – resistance, 2 – reactance. 
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Fig.3. Backscattering form function for: 1 – rigid cylinder,
          2 – matched coating,  3 – coating with the impedance
          shown in Fig.2. 

Fig.4 shows the transparency index (6) of several
cylindrical structures: a rigid cylinder(curve 1), a cylinder
with the matched coating (curve 2), and of two optimal
CERs (curves 3, 4) that render minimum to the goal
function (6). Curve 3 corresponds to the local optimal
coatinng. At low frequencies it is more transparent than the
rigid or matched cylinder.

Fig.4. Acoustical transparency of: 1 – rigid
         cylinder, 2 – matched coating, 3 – optimal
         local coating , 4 – optimal CER with
         coupled first neighbors

At higher frequencies it is a little more efficient than the
matched coating. Curve 4 corresponds to the coating with
optimal coupling between the first neighbors. As it is
clearly seen, the coupling makes the efficiency higher than 
that of  the optimal local coating as well as of the matched
coating at low and middle frequency range (ka<4). At 
higher frequencies the curve 4 approaches curves 3 and 2. 
The author also verified that introduction of couplings
between the second and third neighbors widens the
frequency band of transparency and increases the 
transparency index in the band.
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5 Conclusion 

The main results of the paper are the following. An optimal 
coating of a very simple structure is sufficient for making a 
body invisible with respect to pulse-echo systems – see 
Fig.3. Much more complex coatings are needed to make a 
body nonscattering. Such a coating should have a certain 
number of couplings between its elements, depending on 
the required efficiency and width of the frequency band of 
transparency. Physically, the couplings provide the 
propagation of vibration along the coated surface for further 
reradiating sound in the forward direction and reducing the 
shadow.

As for implementation of the proposed coatings, the 
problem is confined to construction of elements and 
couplings with given impedances (like shown in Fig.2) 
using available materials and mechanical devices. Here, the 
experience gained in designing electric and numerical 
filters may be useful. 
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