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In this work, a theoretical model is proposed to predict the dispersion and the transient displacement field 
generated by laser in a functionally graded plate (FGP). After the laser line source is assumed as an ideal 
transient force, and the FGP is considered as an inhomogeneous plate along its thickness direction, the dispersion 
curves and the transient displacement waveforms are numerically solved. The model is first demonstrated on an 
aluminum plate with the comparison of the result on a homogeneous model. Laser ultrasonic measurement was 
carried on a FGP sample, and the direct arrivals of longitudinal and shear waves were observed in the 
experimental displacement field. The agreement between experimental and calculated theoretical waveforms 
provides a promise for both experimental and theoretical methods. 

 

1 Introduction 

Functionally graded materials (FGMs) have spatial 
variations in composition and structure resulting in 
corresponding changes in material properties. FGMs can be 
applied in various ways to improve material performance 
including: enhancing the strength of interfacial bonding and 
eliminating the presence of an abrupt interface, 
redistributing and minimizing thermal stress, suppressing 
micro crack damage and improving impact resistance, and 
reducing the driving force for crack formation at interfaces. 
While FGMs show great potential, few experiments has 
been reported on the study of ultrasound propagation in 
FGMs, due to the coupling difficulty of generating and 
detecting ultrasounds by conventional transducers. 
However, laser ultrasonics [1] is a technique through which 
the ultrasound is excited and detected by lasers, it delivers a 
high spatial and temporal resolution in a noncontact way (a 
large k and omega technique). With the advantage of this 
technique, it is possible to study FGMs in a noncontact 
way, which may provide a nondestructive testing tool on 
site. 
Very recently, Baron et al. have theoretically studied the 
impact of inhomogeneity on the dispersion of surface wave 
for a solid [2]. Matsuda and Glorieux have obtained the 
dispersion of surface wave for a medium with continuously 
or discontinuously varying elastic property and mass 
density profiles for a plate [3]. The authors have found the 
dependence of the surface wave dispersion on power-law 
profiles for functionally graded coatings on a cylinder [4]. 
To author’s knowledge, the transient response of a 
functionally graded plate has not been reported. The 
objective of this work is to develop a model that could not 
only provide the dispersion equation, but also predict the 
transient displacement response of a functionally graded 
plate excited by a laser line source. Numerical results on 
dispersion curves and transient displacement responses are 
presented to demonstrate the model. Laser ultrasonic 
experiment was carried out on FGMs samples, and 
experiment waveforms are further compared with 
theoretical predictions. 

2 Theoretical model and solution 

Consider the acoustic wave propagation in a functionally 
graded plate of thickness d, and the density ρ(z) and two 
lamé coefficients λ(z) and μ(z) vary along the thickness 
direction z. The governing wave equation is 
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with stress-strain relation as 
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The displacement U and the stress vector σ are sought in 
the form :  
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where s being the horizontal slowness,  ω the angular 
frequency, the horizontal wave number kx=ωs. Generally no 
explicit analytical solution exists for the corresponding 
wave equation of a second order differential equation with 
varying coefficients. The state vector approach [5] is 
applied to obtain the following matrix differential equation:  
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where ( )4 ( ) 2ξ μ λ μ λ μ= + + , and state vector B is the 
displacement–traction as: 

( )T( ) ,x z xz zzz i u i uω ω σ σ=B   (5) 

and  Eq. (4) could be rewritten as 
( ) ( ) ( )z z z z∂ ∂ =B Q B     (6) 

The propagator matrix M(z, z0) is the fundamental solution 
of Eq. (4) with the form : 

0 0(z)= (z, z ) (z )B M B     (7) 

where z0 is a reference point on the z-axis. The matrix can 
be calculated by the Peano expansion : 
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      (8) 
The explicit form of the system matrix Q(z) allows a 
convenient factorization by ω. In Eq. (4), Q(z) can be 
rewritten as a series in ω with coefficients depending only 
on z (through the upper integration limit) and s. This 
factorization can lead to a matrix polynomial form of the 
propagator matrix. 
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Let the laser line source excite the plate at (x, z)＝(0, 0) in 
ablation regime. Assuming a delta source in time [6], we 
have  

( )T
0( 0) 0x zz i u i u Fω ω= = −B       (9) 

where F0 represents the intensity of the laser source in 
unit N⋅μs⋅m-1. The other side of the plate is traction-free 
which leads to the P-SV wave dispersion equation in the 
form: 

3det ( ,0) 0d =M     (10) 

where M3(d, 0) is the left-down off-diagonal block of 
M(d, 0). The left hand side of Eq. (10) can be arranged 
as a polynomial, whose zeros are the eigen frequencies 
for a prescribed value of s. Thus the obtained set of pairs 
(ω, kx) describe the dispersion curves. And the laser 
excited transient displacement at z=d is: 

( ) ( )( )T T1
2 1 3 4 0 0x zi u i u Fω ω −= − −M M M M       (11) 

Where M1, M2, M3, M4 correspond to the left-up, right-up, 
left-down, and right-down off-diagonal block of M(d, 0) as 
four 2×2 sub-matrix. 
For the comparison with experiment, the transient 
displacements are obtained in time and space domain by a 
method suggested by Weaver et al [7]. The Fourier 
transform is generalized by replacing ω by a complex 
variable ω-iδ with a small, constant and imaginary part δ, 
and we have 
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   (12) 
The benefit of this method is twofold: (i) it preserves the 
application of the fast Fourier transform algorithms for the 
final inversion, and (ii) the integrand is a nonsingular 
function that may now be integrated numerically. To 
perform the numerical integration, the value δ=0.4 rad⋅μs-1 
has been chosen for the auxiliary parameter in the following 
numerical calculations. 

3 Result on a homogeneous plate 

To demonstrate the theoretical model and solution, the 
dispersion spectrum has been calculated for a 1 mm thick 
aluminum plate, and it is compared with that obtained by an 
analytical method for a homogeneous plate [8]. The 
dispersion curves of various P-SV wave modes are clearly 
observed in Figs. 1(a) and 1(b) obtained on the 
homogeneous model (the analytical method) and the 
proposed inhomogeneous one respectively. As shown in 
Fig. 1(a), the first order modes S0 and A0 are the basic 
symmetric and anti-symmetric mode of a plate, and S1, A1, 
… are the high order modes for a homogeneous plate. The 
density, and the longitudinal and shear wave velocities for 
aluminum, are chosen to be ρ=2700 kg/m3, VL=6400 m/s 
and VT=3110 m/s through this paper. The dispersion 
spectrum obtained by the presented theoretical model and 
solution in Fig. 1(b) is identical to that by the analytical 
method, this shows the capability of an inhomogeneous 
model in dealing with a homogeneous plate. 

Fig.1 Dispersion spectrum for 1 mm aluminum plate by (a) 
homogeneous and (b) inhomogeneous (functionally graded) 

model. 

To further demonstrate the theoretical model and solution, 
the transient displacement response has been calculated for 
a 5 mm thick aluminum plate, and then compared with that 
obtained by the analytical method for a homogeneous plate 
[7]. Various longitudinal and shear wave modes are clearly 
observed in Figs. 2(a) and 2(b) observed at the epicenter 
and non-epicenter position respectively. As shown in Fig. 
2(a), the transient waveform obtained by the proposed 
solution (up) is close to that by the analytical method 
(down) regarding the arrival times and amplitudes of the 
direct longitudinal (L) and shear (T) waves, the reflected 
longitudinal (3L) and shear (3T) waves. The slight 
difference in the waveform is caused by the limitation of 
the calculation by the proposed method to a narrow range 
of frequency and wave number. Overpassing this numerical 
difficulty is in progress in our lab. Similar result for a non-
epicenter observation position is shown in Fig. 2(b). The 
agreement further emphasizes the capability of the 
proposed inhomogeneous model in dealing with a 
homogeneous plate. 
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Fig.2 Laser excited transient displacement for a 5 mm 

aluminum plate calculated at (a) epicenter x=0 and (b) non-
epicenter x=5 mm. 

4 Result on a graded plate 

A functionally graded sample of thickness 6.05 mm and 
diameter 32 mm is now considered. Its top side is composed 
of 93% tungsten, the down side is made of 97% titanium, 
the middle is mixed with both metals in a gradual variation 
of density. The density of this plate is gradually increasing 
from the down side to the top side as show in the following 
table 1. 

Thickness(mm) 0–
1.00 

1.00–
1.69 

1.69–
2.38 

2.38–
3.07 

Density(g/cm3) 4.32 5.56 7.21 9.00 

Thickness(mm) 3.07-
3.76 

3.76–
4.45 

4.45-
5.05 

5.05-
6.05 

Density(g/cm3) 11.02 13.27 15.52 17.85 

Table 1 The graded profile for a functionally graded plate 

Laser ultrasonic experiment was carried out on this sample, 
and corresponding theoretical waveforms are obtained for 
comparison. As shown in Fig. 2(a), 31 experimental 
waveforms were recorded by scanning the laser line source 
in an interval of 0.66 mm, while fixing the detecting laser at 
the center of the opposite side. The direct arrival of 
longitudinal (L) and shear (T) waves are clearly observable 
with the arrival time corresponding to the theoretical 
prediction based on the profile in Table 1 (see the × mark). 
As shown in Fig. 2(b), 31 theoretical waveforms were 
calculated to simulate the laser excited acoustic field. 
Although the main frequency components of theoretical 
waveforms are relatively low, the arrival of the direct 
longitudinal (L) and shear (T) waves are observable, 
correspondingly to the theoretical prediction (see the × 
mark). It can be concluded that the proposed theoretical 
model and solution is able to predict the transient acoustic 
field observed in experiment. In addition, the arrivals of 
direct longitudinal and shear waves are delayed in 
comparison to that predicted by the theory for the scanning 
position from 8 mm to 10 mm. It is certain that there are 
defects in the sample resulting to the relatively low sound 
velocity. This provides a simple method of non destructive 
evaluation of the FGMs in a noncontact way. 
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Fig.3 Laser excited transient displacment field : (a) 

experiment (b) theory for a functionally graded plate. 
 
 

5 Conclusion 

A theoretical model and solution is presented to predict the 
dispersion and transient displacement excited by laser in a 
functionally graded plate. The laser line source could be 
assumed as an ideal transient force, and the dispersion and 
transient displacement is numerically obtained and 
compared with that by the analytic method. The agreement 
on an aluminum plate demonstrates the capability of the 
proposed inhomogeneous model in dealing with a 
homogeneous plate.  Laser ultrasonic measurement was 
carried out, and the direct arrivals of longitudinal and shear 
waves were observed in the experimental displacement 
field. The agreement between experimental and calculated 
theoretical waveforms provides a promise for the 
application to NDE of graded materials. 
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