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In this paper, a mathematical submodel for auditory attention focusing is discussed in the framework of our 
ongoing research towards a unified model for soundscape perception. The submodel implements a balance 
between top-down focusing, in which higher level cognition guides attention towards expected sources, and 
bottom-up focusing, in which attention is triggered by the noticing of sound events. Attention elasticity – the 
ability to switch attention between different environmental sounds – depends on the current context (natural, 
urban…) as well as on the current activity of the modeled individual. The soundscape perception model is 
applied to case studies of simulated sound exposure in open area and in environments with a mixture of natural 
and man-made sounds. A comparison of the simulation results with survey results shows that introducing a 
submodel for auditory attention focusing into our model for soundscape perception enhances its ability to predict 
the emergence of annoyance. 

1 Introduction

During the past few decades, a lot of research effort has 
been devoted to the development of methods for the 
characterization of outdoor sonic environments. Whereas 
the traditional aim of environmental noise research has 
been to specify the relationship between physical properties 
of environmental sound and its possible negative effects on 
the population as a whole (e.g. community noise annoy-
ance), soundscape research takes a more positive and 
human-centered approach, thereby focusing on individual 
perception and expectation [1]. The increasing availability 
of computing power opens up the opportunity to use 
computational models for the perception of environmental 
sound by the individual listener in this research. 
During the last decade, knowledge on (the neurobiological 
basis of) auditory perception has expanded enormously, for 
a large part thanks to the advent of several new brain 
imaging techniques (see e.g. [2] for a review). This 
evolution stimulated the development of very detailed 
computational models for human auditory processing, such 
as [3–5]. Most of these models, however, focus on speech 
processing; auditory processing of environmental sound has 
rarely been assessed with the same amount of detail [6]. 
Two important obstacles prevent that models such as those 
cited above are readily applied in soundscape research. 
Firstly, whereas processing of speech is usually a matter of 
seconds or minutes, environmental soundscape perception 
emerges over much longer stretches of time. For example, 
evaluating the sonic quality of the living environment is a 
process that could take months. Due to this huge difference 
in time scale, computational time and memory constraints 
make the use of detailed neurobiological models infeasible. 
Secondly, personal factors have a very strong effect on 
environmental sound perception (see e.g. [7–9]). For these 
reasons, studies on the effect of environmental sound are 
always based on averages over vast numbers of people 
(typically hundreds to thousands). 
In earlier work [10–13], the authors have already presented 
an approach which tries to tackle the above described 
problems. The proposed methodology consists of 
simulating a large synthetic population of modeled 
individuals, each with its own personal characteristics and 
within its own context. The model for a single individual 
tries to achieve a balance between computational efficiency 
and psychoacoustical and psychological plausibility. 
Results are then analyzed statistically, exactly as one would 
analyze results of field studies with populations of 
biological agents. 

This early work mainly focused on determining salient 
features of the soundscape (so called notice-events), but did 
not fully account for the influence of attention focusing. 
More in particular, noticing a single type of environmental 
sound was modeled to be independent of the presence of 
other types of sounds (other than masking effects). In this 
paper, the model for a single individual is extended with a 
simple but fast submodel for attention focusing. In Section 
2, the layout of the modeling approach is briefly described, 
and the submodel for attention focusing is explained in 
detail. In Section 3, the model is applied to some test cases. 

2 A model for environmental sound 
perception

2.1 Saliency detection 

The input of the proposed model for a single individual is 
formed by a set of sound level time series, which simulate 
the various environmental sounds to which the individual is 
exposed. When a listener is exposed to an environment with 
multiple sound sources, the acoustic pattern at the ear will 
consist of the sum of all concurrent sounds. Nevertheless, 
the human auditory system is able to separate this mixture 
of sounds, and to form separate descriptions of each sound 
source. This mechanism is commonly referred to as 
auditory scene analysis (ASA) [14]. By simulating auditory 
streams for each separate environmental sound source, the 
non-trivial problems of modeling ASA and sound source 
recognition are effectively by-passed, making the model 
flexible and the numerical effort feasible1. 
In a first step (bottom half of Fig. 1), the model analyzes 
which environmental sounds are standing out of the 
ambient sound, and thus may be noticed during everyday 
activities and receive attention. It is believed that a large 
part of this process is pre-attentive [2]. Saliency detection is 
implemented as a peak detection algorithm, for each 
individual sound i in the multi-source environment, by 
comparing its signal-to-noise ratio with a time-varying 
noticing threshold Ti(t): 

 , ,sound i ambient i iL t L t T t   (1) 

The ambient level is hereby formed by all sounds other than 
sound i, present in the soundscape, and thus forms a 
physiological masking background. The physiological 
limitations of the ear are accounted for by A-weighting. 
Because the peak detection is implemented for each 
individual type of sound in the complex acoustic 

                                                           
1 The problems of ASA and sound source recognition will have to 
be tackled, if the model is to be applied to soundscape recordings. 
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environment, deviant behavior on the frequency axis, which 
is normally included in the calculation of a saliency map 
[15], can be neglected in a first approximation. The process 
described in Eq. (1) marks notice-events: segments in time, 
during which the sound under study is noticed. 
To include habituation in the saliency detection mechanism, 
the signal-to-noise ratio for a particular source – the left 
part of Eq. (1) –  is reduced by an amount that depends 
linearly on the exponential average of past excitations: 

 0 0
, , exp d

t

h sound i ambient i
h

t tC L t L t t   (2) 

where h is the time constant for habituation. 
Very little is known on the dependence of the threshold for 
noticing a sound on attention. It is however safe to assume 
that this threshold monotonously decreases with increasing 
attention Aes,i to the source considered; hence for simplicity, 
this relationship is approximated by a linear function, 

 ,i base es iT t T f A t   (3) 

with f a general constant. 

2.2 Attention focusing 

It is widely acknowledged that attention focusing is 
directed using both bottom-up, sound based cues and top-
down, activity dependent cues [2, 16]; similar mechanisms 
have been identified in visual attention focusing [17–18]. 
Top-down attention focusing is guided by higher level 
cognitive processing, in which meaning is attached to the 
sounds, within an experienced (including other senses than 
hearing) and expected context (based on prior experience). 
To date, no computer models are available that can handle 
this part of the complex problem. To provide the essential 
higher-level cognitive information on top-down attention 
Atopdown for environmental sound, therefore, a very 
simplified model is introduced: 

 0 0
,0 , exp d

t

topdown es es i
i es

t tA A A t t   (4) 

where Aes,0 is the background attention for environmental 
sound, which depends among others on the current context, 
activity and intentions of the modeled individual. For 
simplicity, this background attention is kept constant during 
simulation, implying that the modeled individual only takes 
part in a single activity. The second term in Eq. (4) expres-
ses the fact that bottom-up attention Aes,i triggered by parti-
cular environmental sounds may eventually increase top-
down attention as well. Focusing is thus based on earlier 
noticed sounds, and fades away with a time constant es. 
The factor  weighs the importance of this top-down effect. 
When a peak detect occurs for a particular sound, it tries to 
attract attention. This bottom-up attention process is 
introduced in the model in a simple and fast way by an 
attention switch process that distributes available attention 
over sounds reaching the detection threshold. Rather than 
strictly limiting total attention, an amount of attention is 
focused on the newly detected sound, decreasing as 
attention is already focused on other environmental sound, 

 , ,bottomup es d es i
i

A A A t   (5) 

where Aes,d is the dynamic part of attention and  is a factor 
indicating which part of available attention is attributed to 
the newly detected sound. Together, Aes,d and  determine 
the attention elasticity: the ability to switch attention 
between different environmental sounds. If the person-
activity combination does not allow switching attention to 
environmental sounds easily, Aes,d should be kept small. If 
attention can not easily be switched between environmental 
sounds,  should be kept small. The total level of attention 
attributed to the ith environmental sound finally becomes: 

 , exp i
es i topdown bottomup

i

t tA t A A   (6) 

where ti is the instance of the last increase of attention and 
i is a suitable time constant. This model implicitly includes 

attentional gating. The top half of Fig. 1 shows the layout of 
the attention focusing module. 
Attention and excitation level (S/N ratio) determine which 
environmental sounds are noticed. Note that the proposed 
model allows several environmental sounds to be noticed at 
the same time, and thus to share some of the listener’s 
attention. This may seem surprising at first glimpse, but is 
solely determined by the smallest time steps of the order of 
1s that are typically chosen for this type of simulation. 
During this time interval, attention may actually switch up 
and down between both sources at hand, leading to a non-
zero average level of attention for each. 

bottom-up attention to
environmental sounds

habituation

attention switch

simulated 
sounds

S/N
ratio

attention

top-down
attention to

environmental
sounds

higher level
cognition

saliency
detection
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Fig. 1. General layout of the soundscape perception model.

Acoustics 08 Paris

5503



 

3 Simulation results 

3.1 Open area soundscapes 

In a first case study, we look at the influence of model 
parameters, linked to auditory perception, on the trends 
observed in simulations. Let us consider the perception of 
open area soundscapes, in which one is actively looking for 
recreation and psychological restoration. It can safely be 
assumed that the listener is attentive for the natural 
environment, including its soundscape. Hence attention for 
environmental sounds is relatively high. 
In a typical but quite general situation for the open area 
soundscape, the listener is surrounded by natural sound and 
confronted with sounds from a highway, a road and a 
railway, located at respective distances dhw, drd, and drw, and 
carrying traffic intensities Nhw, Nrd and Nrw (all sampled 
from distributions typical for the open area in northwest 
Europe). A typical noise emission for the European fleet is 
used [19]. Natural ambient sound levels also differ between 
situations, and are assumed to fluctuate following a 1/f 
characteristic – we refer to earlier work [10–13] for more 
details on this. 
A synthetic population of 10000 individuals was simulated 
during 1 hour of exposure. Fig. 2 shows the average time 
that sounds are noticed as a function of ambient natural 
sound level, for different average levels of road traffic 
sound, for high and low top-down attention Aes,0 for 
environmental noise, respectively. The overall trend of 
these results corresponds to what could be expected. As 

ambient noise level grows, traffic noise is less noticeable. 
The effect is less for higher traffic noise levels. Similarly, 
natural sound is more often noticed as natural ambient 
sound levels grow and as traffic noise levels are less. Since 
modeled attention can not be judged quantitatively, its 
value can only be deduced from observing phenomeno-
logical effects. From the results in Fig. 2(a) it could be 
assumed that this level of attention corresponds to a trained 
environmental scientist observing the rural soundscape; Fig. 
2(b) would correspond to that of the recreating visitor. With 
decreasing attention for environmental sound, the curves 
seem to shift over the x-axes. As bottom-up attention is 
ignored, the main reason for the observed trends is 
physiological masking or at least reduction of signal-to-
noise ratio. 
Let us now increase the level of bottom-up attention to a 
level comparable to the difference between the two levels 
of top-down attention used above: Aes,d  Atopdown

(high) – 
Atopdown

(low). In Fig. 3, results are shown for less and more 
volatile attention respectively. On average, the time that 
environmental sounds are noticed increases with added 
bottom-up attention, but the effect is different from the 
effect of increased top-down attention: the duration of 
noticing lower level traffic sound does not increase as much 
as the duration of hearing loud traffic sound. This can 
clearly be related to attracting more attention. Differences 
between Figs. 3(a) and (b) are most pronounced in the 
region where neither the traffic sound nor the natural sound 
dominates. Indeed, a different type of environmental sound 
needs to be present for switching of attention between 
sounds to occur, and thus for volatile attention to show its 
effect. 
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Fig. 2. Time that road traffic noise and natural sound is
heard within one hour, as a function of average natural
ambient sound level, for different average traffic noise
levels. (a) high and (b) low top-down attention. 
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Fig. 3. Time that road traffic noise and natural sound is 
heard within one hour, as a function of average natural 
ambient sound level, for different average traffic noise 
levels, with low top-down attention and medium bottom-up
attention. (a)  =0.5, (b)  = 1. 
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3.2 Soundscapes with combined exposure 

In a second case study, we look at the perception of the 
soundscape in an at-home context, in which individuals are 
exposed to a combination of road and railway traffic. A 
synthetic population was created, resembling the population 
of participants of a recent Belgian nationwide retrospective 
questionnaire survey on annoyance [20] as close as 
possible. Instead of sampling distances to roads and traffic 
intensities from random distributions, the addresses of the 
dwellings of the 7500 participants were used to calculate 
the distance of each dwelling to the nearest main road and 
railway track, and to determine the average hourly intensity 
of vehicles/trains during daytime on the road/track. 
While at home, the modeled individuals may be engaged in 
various activities, and consequently may have a varying 
background attention to noise. Therefore, background 
attention was randomized between individuals. Dwelling 
acoustic insulation also differs between situations, but 
because of a lack of data on insulation of individual 
dwellings, this parameter was randomized between 0 (open 
window) and 30 dB(A). The sound produced by the home 
activity (radio, television, cooking, playing children…) can 
not be modelled accurately, so a similar approach was used 
as the approach used to create the natural ambient sound in 
outdoor situation. 
In earlier work [10–13], we already showed that our model 
is able to give a qualitative explanation for the railway 
bonus – the difference in annoyance between road and 
railway traffic noise at the same average sound level – a 
phenomenon that has been observed in several field studies 
in the past [21]. Here, we will focus on railway noise 
annoyance more in particular. Fig. 4 shows the survey 
exposure-effect relationship for railway noise annoyance, 
for exposure to railway noise higher, lower and 
approximately equal (±5 dB(A)) to road traffic noise 
exposure (Lden was calculated using standard noise mapping 
software). It can be seen that, for equal average railway 
noise level, railway noise annoyance is lower when road 
traffic noise exposure exceeds railway traffic noise 
exposure, at least for railway noise levels below 65 dB(A). 
Fig. 5 shows the average above-threshold exposure level2 
SELthr of the sound noticed by the simulated individuals, 
caused by railway traffic noise exposure, similarly split up 
for different relative levels of road traffic noise exposure. 
An even more pronounced trend can be spotted. 
How can these observations be explained in light of the 
discussed model? Consider the sound event caused by a 
train passage. With increasing level of the event, the 
probability that it is noticed and draws attention increases 
gradually. When train noise is considered on its own, 
habituation gradually decreases the probability of noticing, 
while focusing attention raises this probability. When road 
traffic noise is added to this picture, it will act as an 
additional background noise for noticing train passages. 
The reduced signal-to-noise ratio will decrease the overall 
probability of noticing. More detailed analyses show that 
the crossing of curves at high exposure levels is 
accompanied by increased bottom-up attention for the 
(loud) train sounds. 

                                                           
2 SELthr is defined as the integrated strength of the sounds noticed, 
where strength is defined as the S/N ratio suitably modified to 
account for habituation and attention. 
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Fig. 4. Average annoyance of the survey population (5-
point scale), caused by railway traffic noise exposure, split 
up for relative levels of road traffic noise exposure. 
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Fig. 5. Above-threshold exposure level of the sound noticed 
by the simulated individuals of the synthetic population, 
caused by railway traffic noise exposure, split up for 
relative levels of road traffic noise exposure. 

4 Conclusion

In this paper, a submodel for auditory attention focusing 
was discussed in the framework of a computational model 
for human auditory perception of environmental sound.  
The influence of including bottom-up attention leads to less 
abrupt transitions in combined exposure situations than a 
model solely based on perceptual masking would. The 
application to perception of open area soundscapes shows 
expected results for the influence of natural ambient sound 
levels. The application in an at-home environment gives 
insight into the combined effect of road and rail noise on 
people. For the latter, qualitative agreement with the results 
of a large survey was found. 
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